《中考课件初中数学总复习资料》专题48 中考数学数形结合思想(原卷版).docx
《《中考课件初中数学总复习资料》专题48 中考数学数形结合思想(原卷版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题48 中考数学数形结合思想(原卷版).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题48 中考数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质
2、研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。2.数形结合思想应用常见的四种类型(1)实数与数轴。实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。(2)在解方程(组)或不等式(组)中的应用。利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。(3)在函数中的应用。借助于图象研究函数的性质是一种常用
3、的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。(4)在几何中的应用。对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形
4、的联系和转化,化难为易,化抽象为直观.【例题1】(2020遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图在RtACB中,C90°,ABC30°,延长CB使BDAB,连接AD,得D15°,所以tan15°=ACCD=12+3=2-3(2+3)(2-3)=2-3类比这种方法,计算tan22.5°的值为()A2+1B2-1C2D12【对点练习】(2019湖北省仙桃市)不等式组的解集在数轴上表示正确的是()A BCD【例题2】(2020济宁)数形结合是解决数学问题常用的思想方法如图,直线yx+5和直线ya
5、x+b相交于点P,根据图象可知,方程x+5ax+b的解是()Ax20Bx5Cx25Dx15【对点练习】(2020株洲模拟)直线y=k1x+b1(k10)与y=k2x+b2(k20)相交于点(2,0),且两直线与y轴围城的三角形面积为4,那么b1b2等于 【例题3】(2020通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上(1)小明发现DGBE,请你帮他说明理由(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长(3)如图3,
6、小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出GHE与BHD面积之和的最大值,并简要说明理由【对点练习】(2020山东日照模拟)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半即:如图1,在RtABC中,ACB=90°,ABC=30°,则:AC=AB探究结论:小明同学对以上结论作了进一步研究(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:ACE为等边三角形;BE与CE之间的数量关系为 (2)如图2,点D是边CB上任意一点,连接AD,作等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题48中考数学数形结合思想(原卷版)
限制150内