《中考课件初中数学总复习资料》专题57:第12章压轴题之开放探究类-备战2021中考数学解题方法系统训练(全国通用)(原卷版).doc
《《中考课件初中数学总复习资料》专题57:第12章压轴题之开放探究类-备战2021中考数学解题方法系统训练(全国通用)(原卷版).doc》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题57:第12章压轴题之开放探究类-备战2021中考数学解题方法系统训练(全国通用)(原卷版).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、57第12章压轴题之开放探究类一、单选题1已知关于、的二元一次方程组给出下列结论:当时,此方程组无解;若此方程组的解也是方程的解,则;无论整数取何值,此方程组一定无整数解、均为整数),其中正确的是ABCD2“勾股图”有着悠久的历史,它曾引起很多人的兴趣1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在几何原本中曾对该图做了深入研究如图2,在中,分别以的三条边为边向外作正方形,连结,分别与,相交于点,若,则的值为( ) ABCD3如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1A1D1,白
2、甲壳虫爬行的路线是ABBB1,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数)那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )A0B1CD4在平面上,边长为的正方形和短边长为的矩形几何中心重合,如图,当正方形和矩形都水平放置时,容易求出重叠面积甲、乙、丙三位同学分别给出了两个图形不同的重叠方式; 甲:矩形绕着几何中心旋转,从图到图的过程中,重叠面积大小不变乙:如图,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时,此时的重叠面积大于图的重叠面积丙:如图,将图中的矩形向左上方平移,使矩形
3、的一条长边恰好经过正方形的对角线,此时的重叠面积是个图形中最小的下列说法正确的是( )A甲、乙、丙都对B只有乙对C只有甲不对D甲、乙、丙都不对二、填空题5(1)如图,五角形的顶点分别为A、B、C、D、E,A+B+C+D+E=_(2)如图,A+DBE+C+D+E=_(3)如图,A+B+C+D+E=_(4)如图,123456_6在平面直角坐标系中,点A(0,4),B(-2,0),C(a,-a),ABC的面积小于10,则a的取值范围是_7如图,点的坐标为,过点作轴于点,轴于点,点为线段上一点,若第一象限内存在点,使为等腰直角三角形,请直接写出符合条件的点坐标_8如图,在RtABC中,ACB90
4、76;,AC4,BC6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折DBE,使点B落在点F处,连接AF,则当线段AF的长取最小值时,sinFBD是_三、解答题9定义:到三角形的两个顶点距离相等的点,叫做三角形的“中垂心”如图1,在ABC中,PA=PB,则点P叫做ABC的“中垂心”(1)根据定义,中垂心可能在三角形顶点处的三角形有_(举一个例子即可);(2)应用:如图2;在ABC中,请画出“中垂心”P,使PA=PB=PC(保留作图痕迹,不写画法)(3)探究:如图3,已知ABC为直角三角形,C=90°,ABC=60°,AC=,“中垂心”P在AC边
5、上,求PA的长如图4,若PA=PB且“中垂心”P在ABC内部,总有AC+BC2AP,请说明理由10如图,在中,为的中点,将绕点顺时针旋转得到,连结、.(1)若为等边三角形,试探究与有何数量关系?证明你的结论;(2)若为等边三角形,当的值为多少时,?(3)当不是等边三角形时,(1)中结论是否仍然成立?若不成立,请添加一个条件,使得结论成立,并说明理由.11如图,以点为旋转中心,将线段按顺时针方向旋转得到线段,连结(1)比较与的大小,并说明理由(2)当时,若,请你编制一个计算题(不标注新的字母),并解答12问题呈现:已知等边三角形边的中点为点,的两边分别交直线,于点,现要探究线段,与等边三角形的边
6、长之间的数量关系(1)特例研究:如图1,当点,分别在线段,上,且,时,请直接写出线段,与的数量关系:_;(2)问题解决:如图2,当点落在射线上,点落在线段上时,(1)中的结论是否成立?若不成立,请通过证明探究出线段,与等边三角形的边长之间的数量关系;(3)拓展应用:如图3,当点落在射线上,点落在射线上时,若,请直接写出的长和此时的面积13综合与实践问题情境从“特殊到一般”是数学探究的常用方法之,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律如图1,在中,为边上的中线,为上一点,将以点为旋转中心,逆时针旋转90°得到,的延长线交线段于点探究线段,之间的数量关系数学思考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料 中考 课件 初中 数学 复习资料 专题 57 12 压轴 开放 探究 备战 2021 解题 方法 系统 训练 全国 通用 原卷版
链接地址:https://www.taowenge.com/p-4968266.html
限制150内