专题20分式方程(2)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc
《专题20分式方程(2)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc》由会员分享,可在线阅读,更多相关《专题20分式方程(2)-2020年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题20分式方程(2)(全国一年)学校:_姓名:_班级:_考号:_一、单选题1(2020·四川甘孜?中考真题)分式方程的解为( )ABCD【答案】D【解析】【分析】根据解分式方程的步骤解答即可【详解】解:方程变形得.方程的两边同乘(x-1),得3=x-1.解得x=4.经检验,x=4是原方程的解故选:D【点睛】本题主要考查了解分式方程,熟练掌握把分式方程转化为整式方程是解答本题的关键2(2020·四川南充?中考真题)若,则x的值是 ( )A4BCD4【答案】C【解析】【分析】根据解分式方程即可求得x的值【详解】解:,去分母得,经检验,是原方程的解故选:C【点睛】本题考查分式方
2、程,熟练掌握分式方程的解法是解题的关键3(2020·四川遂宁?中考真题)关于x的分式方程1有增根,则m的值()Am2Bm1Cm3Dm3【答案】D【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可【详解】解:去分母得:m+3x2,由分式方程有增根,得到x20,即x2,把x2代入整式方程得:m+30,解得:m3,故选:D【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值4(2020·四川自贡?中考真题)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天
3、的工作效率比原计划提高了35%,结果提前40天完成了这一任务;设实际工作时每天绿化的面积为万平方米,则下面所列方程中正确的是( )ABCD【答案】A【解析】【分析】根据题意分别表示实际工作和原计划工作所用的时间,再以时间为等量构造方程即可;【详解】解:由题意可得原计划的工作效率为,所以原计划的工作时间为,实际的工作时间为,所以原计划的时间减去实际的时间为40天,则可得故选:A【点睛】本题考查了由实际问题列出分式方程,解题关键是找准等量关系,正确列出分式方程5(2020·重庆中考真题)若关于x的一元一次不等式结的解集为;且关于的分式方程有正整数解,则所有满足条件的整数a的值之积是( )
4、A7B14C28D56【答案】A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可【详解】解:解不等式,解得x7,不等式组整理的,由解集为xa,得到a7,分式方程去分母得:ya3y4y2,即3y2a,解得:y,由y为正整数解且y2,得到a1,7,1×77,故选:A【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键6(2020·四川成都?中考真题)已知是分式方程的解,那么实数的值为( )A3B4C5D6【答案】B【解析】【分析】将代入原方程,即可求出
5、值【详解】解:将代入方程中,得解得: 故选:B【点睛】本题考查了方程解的概念使方程左右两边相等的未知数的值就是方程的解“有根必代”是这类题的解题通法7(2020·黑龙江哈尔滨?中考真题)方程的解是( )ABCD【答案】D【解析】【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解【详解】解:方程可化简为 经检验是原方程的解 故选D【点睛】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键8(2020·四川泸州?中考真题)已知关于x的分式方程的解为非负数,则正整数m的所有个数为( )A3B4C5D6【答案】B
6、【解析】【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,即可解题【详解】解:去分母,得:m+2(x-1)=3,移项、合并,解得:x=,分式方程的解为非负数,0且1,解得:m5且m3,m为正整数m=1,2,4,5,共4个,故选:B【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解9(2020·四川广元?中考真题)按照如图所示的流程,若输出的,则输入的m为( )A3B1C0D-1【答案】C【解析】【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m的值,从而可以解答本题【详解】解:当m2-2m0时,解得m=0,经检
7、验,m=0是原方程的解,并且满足m2-2m0,当m2-2m0时,m-3=-6,解得m=-3,不满足m2-2m0,舍去故输入的m为0故选:C【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法10(2020·山东枣庄?中考真题)对于实数、,定义一种新运算“”为:,这里等式右边是实数运算例如:则方程的解是( )ABCD【答案】B【解析】【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可【详解】解:方程表达为:解得:,经检验,是原方程的解,故选:B【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式
8、方程的解法11(2020·黑龙江中考真题)已知关于的分式方程的解为正数,则的取值范围是( )AB且CD且【答案】B【解析】【分析】先解分式方程利用表示出的值,再由为正数求出的取值范围即可【详解】方程两边同时乘以得,解得:为正数,解得,即,的取值范围是且故选:B【点睛】本题考查了解分式方程及不等式的解法,解题的关键是熟练运用分式方程的解法,二、解答题12(2020·湖南湘潭?中考真题)解分式方程:【答案】x=-1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得,3+2(x-1)=x,解得,x=-1,经检验
9、,x=-1是原方程的解所以,原方程的解为:x=-1【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验13(2020·湖南岳阳?中考真题)为做好复工复产,某工厂用、两种型号机器人搬运原料,已知型机器人比型机器人每小时多搬运,且型机器人搬运所用时间与型机器人搬运所用时间相等,求这两种机器人每小时分别搬运多少原料【答案】A型号机器人每小时搬运原料,B型号机器人每小时搬运原料【解析】【分析】设A型号机器人每小时搬运原料,先求出B型号机器人每小时搬运原料,再根据“型机器人搬运所用时间与型机器人搬运所用时间相等”建立方程,然后求解即可【详解】设A型号机器人每小时搬运原料,则B型
10、号机器人每小时搬运原料由题意得:解得经检验,是所列分式方程的解则答:A型号机器人每小时搬运原料,B型号机器人每小时搬运原料【点睛】本题考查了分式方程的实际应用,依据题意,正确建立分式方程是解题关键需注意的是,求出分式方程的解后,一定要进行检验14(2020·山东聊城?中考真题)今年植树节期间,某景观园林公司购进一批成捆的,两种树苗,每捆种树苗比每捆种树苗多10棵,每捆种树苗和每捆种树苗的价格分别是630元和600元,而每棵种树苗和每棵种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,种树苗至多购
11、进3500棵,为了使购进的这批树苗的费用最低,应购进种树苗和种树苗各多少棵?并求出最低费用【答案】(1)这一批树苗平均每棵的价格是20元;(2)购进种树苗3500棵,种树苗2000棵,能使得购进这批树苗的费用最低为111000元【解析】【分析】(1)设这一批树苗平均每棵的价格是元,分别表示出两种树苗的数量,根据“每捆种树苗比每捆种树苗多10棵”列方程即可求解;(2)设购进种树苗棵,这批树苗的费用为,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解【详解】解:(1)设这一批树苗平均每棵的价格是元,根据题意,得, 解之,得经检验知,是原分式方程的根,并符合题意答:这一批树苗平均
12、每棵的价格是20元 (2)由(1)可知种树苗每棵价格为元,种树苗每棵价格为元, 设购进种树苗棵,这批树苗的费用为,则 是的一次函数,随着的增大而减小,当棵时,最小此时,种树苗有棵,答:购进种树苗3500棵,种树苗2000棵,能使得购进这批树苗的费用最低为111000元【点睛】本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键15(2020·四川南充?中考真题)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,O
13、N(1)求证:AM=BN;(2)请判断OMN的形状,并说明理由;(3)若点K在线段AD上运动(不包括端点),设AK=x,OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且OMN的面积为,请直接写出AK长【答案】(1)详见解析;(2)是等腰直角三角形,理由详见解析;(3),长为或3【解析】【分析】(1)由“AAS”可证ABMBCN,可得AMBN;(2)连接OB,由“SAS”可证AOMBON,可得MONO,AOMBON,由余角的性质可得MON90°,可得结论;(3)由勾股定理可求BK的值,由,四边形ABCD是正方形,可得:,则可求得,由三角形面积公式可求
14、得;点K在射线AD上运动,分两种情况:当点K在线段AD上时和当点K在线段AD的延长线时分别求解即可得到结果【详解】解:(1)证明:又又(AAS)(2)是等腰直角三角形理由如下:连接,为正方形的中心OAOB,OBAOAB45°OBC,AOBO,MABCBM,即(SAS),AON+BON90°,AON+AOM90°,是等腰直角三角形(3)在中,由,四边形ABCD是正方形,可得:,得:,得:即:当点K在线段AD上时,则,解得:x13(不合题意舍去),当点K在线段AD的延长线时,同理可求得,解得:x13,(不合题意舍去),综上所述:长为或3时,OMN的面积为【点睛】本题是
15、四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解分式方程等知识点,能熟练应用相关性质是本题的关键16(2020·山东泰安?中考真题)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒3
16、00元,B种茶叶的售价是每盒400元两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?【答案】(1)A,B两种茶叶每盒进价分别为200元,280元;(2)第二次购进A种茶叶40盒,B种茶叶60盒【解析】【分析】(1)设A种茶叶每盒进价为元,则B种茶叶每盒进价为元,根据“4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒”列出分式方程解答,并检验即可;(2)设第二次A种茶叶购进盒,则B种茶叶购进盒,根据题意,表达出打折前后,A,B两种茶叶的利润,
17、列出方程即可解答【详解】解:(1)设A种茶叶每盒进价为元,则B种茶叶每盒进价为元根据题意,得解得经检验:是原方程的根(元)A,B两种茶叶每盒进价分别为200元,280元(2)设第二次A种茶叶购进盒,则B种茶叶购进盒打折前A种茶叶的利润为B种茶叶的利润为打折后A种茶叶的利润为B种茶叶的利润为0由题意得:解方程,得:(盒)第二次购进A种茶叶40盒,B种茶叶60盒【点睛】本题考查了分式方程及一元一次方程的实际应用问题,解题的关键是设出未知数,找出等量关系,列出方程,并注意分式方程一定要检验17(2020·四川达州?中考真题)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(
18、元/张)零售价(元/张)成套售价(元/套)餐桌a380940餐椅160已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同(1)求表中a的值;(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张若将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?【答案】(1)a=260;(2)购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是9200元【解析】【分析】(1)用含a的代数式分别表示出600元购进的餐椅数量与用1300元购进的餐桌数量,再根据二者数量相等即可列出
19、关于a的方程,解方程并检验即得结果;(2)设购进餐桌x张,销售利润为W元根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再根据“总利润成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,然后根据一次函数的性质即可解决问题【详解】解:(1)根据题意,得:,解得:a=260,经检验:a=260是所列方程的解,a=260;(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元由题意得:x+5x+20200,解得:x30a260,餐桌的进价为260元/张,餐椅的进价为120元/张依题意可知:Wx×(9402604
20、15;120)+x×(380260)+(5x+20x×4)×(160120)280x+800,k2800,W随x的增大而增大,当x30时,W取最大值,最大值为9200元故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是9200元【点睛】本题考查了分式方程的应用、一元一次不等式和一次函数的应用,属于常考题型,解题的关键是:(1)正确理解题意、由数量相等得出关于a的分式方程;(2)根据数量关系找出W关于x的函数解析式,灵活应用一次函数的性质18(2020·江苏连云港?中考真题)甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐
21、款100000元,公司共捐款140000元下面是甲、乙两公司员工的一段对话: (1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱15000元,种防疫物资每箱12000元若购买种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:、两种防疫物资均需购买,并按整箱配送)【答案】(1)甲公司有150人,乙公司有180人;(2)有2种购买方案:购买8箱种防疫物资、10箱种防疫物资,或购买4箱种防疫物资、15箱种防疫物资【解析】【分析】(1)设乙公司有x人,则甲公司有人,根据对话,即可得出关于x的分式方程,解之经检验后即可得出结论;(
22、2)(2)设购买种防疫物资箱,购买种防疫物资箱,根据甲公司共捐款100000元,公司共捐款140000元列出方程,求解出,根据整数解,约束出m、n的值,即可得出方案【详解】(1)设乙公司有人,则甲公司有人,由题意得,解得经检验,是原方程的解答:甲公司有150人,乙公司有180人 (2)设购买种防疫物资箱,购买种防疫物资箱,由题意得,整理得又因为,且、为正整数,所以,答:有2种购买方案:购买8箱种防疫物资、10箱种防疫物资,或购买4箱种防疫物资、15箱种防疫物资【点睛】本题考查了分式方程的应用,方案问题,二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键19(2020·山东
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 20 分式 方程 2020 全国 中考 数学 真题分项 汇编 02 通用 解析
限制150内