《中考课件初中数学总复习资料》类型五 图形面积问题(解析版).doc
《《中考课件初中数学总复习资料》类型五 图形面积问题(解析版).doc》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》类型五 图形面积问题(解析版).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、类型五 图形面积问题例1、小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质)花圃的长与宽如何设计才能使花圃的面积最大?【答案】:宽6米,长10米【解析】:设花圃的宽为米,面积为平方米则长为:(米)则:,与的二次函数的顶点不在自变量的范围内,而当内,随的增大而减小,当时,(平方米)答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大例2、某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0
2、.4米的正方形ABCD,点E、F分别在边BC和CD上,CFE、ABE和四边形AEFD均由单一材料制成,制成CFE、ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?【答案】:(1)四边形EFGH是正方形(2)当CE=CF=0.1米时,总费用最省【解析】:(1) 四边形EFGH是正方形图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE
3、=CF =CGCEF是等腰直角三角形因此四边形EFGH是正方形 (2)设CE=x, 则BE=0.4x,每块地砖的费用为y元那么:y=x×30+×0.4×(0.4-x)×20+ 当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1答:当CE=CF=0.1米时,总费用最省例3、某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成若设花园的宽为x(m) ,花园的面积为y(m²)(1)求y与x之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其
4、图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大,最大面积是多少?【答案】:(1)y=(2)187.5【解析】: 二次函数的顶点不在自变量的范围内,而当内,随的增大而减小,当时,(平方米)答:当米时花园的面积最大,最大面积是187.5平方米例4、如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x米(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论? 【答案】:(1)25(2)25【解析】:(1)长为x
5、米,则宽为米,设面积为平方米当时,(平方米)即:鸡场的长度为25米时,面积最大(2) 中间有道篱笆,则宽为米,设面积为平方米则:当时,(平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米即:使面积最大的值与中间有多少道隔墙无关例5、如图,矩形ABCD的边AB=6 cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使APQ成直角,设BP=x cm,CQ=y cm,试以x为自变量,写出y与x的函数关系式【答案】:【解析】:APQ=90°, APB+QPC=90°.APB+BAP=90°,QPC=BAP,B=C=90°.ABP
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料类型五图形面积问题(解析版)
限制150内