《中考课件初中数学总复习资料》类型四 抛物线型问题(解析版).doc
《《中考课件初中数学总复习资料》类型四 抛物线型问题(解析版).doc》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》类型四 抛物线型问题(解析版).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、类型四 抛物线形问题例1、已知平面直角坐标系(如图1),直线的经过点和点.(1)求、的值;(2)如果抛物线经过点、,该抛物线的顶点为点,求的值;图1Oxy(3)设点在直线上,且在第一象限内,直线与轴的交点为点,如果,求点的坐标.【答案】:(1) (2)(3)(4,8)【解析】:(1) 直线的经过点直线的经过点 (2)由可知点的坐标为 抛物线经过点、 , 抛物线的表达式为抛物线的顶点坐标为, (3)过点作轴,垂足为点,则轴 , 直线与轴的交点为点点的坐标为,又,,轴 即点的纵坐标是又点在直线上点的坐标为例2、如图在直角坐标平面内,抛物线与y轴交于点A,与x轴分别交于点B(-1,0)、点C(3,0
2、),点D是抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)联结AD、DC,求的面积;备用图第2题图(3)点P在直线DC上,联结OP,若以O、P、C为顶点的三角形与ABC相似,求点P的坐标 【答案】(1)(1,-4)(2)3(3)或【解析】:(1) 点B(-1,0)、C(3,0)在抛物线上,解得 抛物线的表达式为,顶点D的坐标是(1,-4) (2)A(0,-3),C(3,0),D(1,-4) , (3),CADAOB,OA=OC, ,即 若以O、P、C为顶点的三角形与ABC相似 ,且ABC为锐角三角形 则也为锐角三角形,点P在第四象限由点C(3,0),D(1,-4)得直线CD的表达式是
3、,设()过P作PHOC,垂足为点H,则,当时,由得,解得, 当时,由得,解得, 综上得或例3、已知抛物线经过点、(1)求抛物线的解析式;(2)联结AC、BC、AB,求的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作交轴于点,当点在点的上方,且与相似时,求点P的坐标(第3题图)yxABCO【答案】:(1)解得 (2) (3) 点的坐标为或【解析】:(1)设所求二次函数的解析式为,将(,)、(,)、(,)代入,得 解得 所以,这个二次函数的【解析】式为(2)(,)、(,)、(,) ,(3)过点P作,垂足为H设,则(,),当APG与ABC相似时,存在以下两种可能: 则即 解得点的坐标为
4、 则即 解得点的坐标为例4、已知抛物线经过点A(1,0)和B(0,3),其顶点为D.(1)求此抛物线的表达式;(2)求ABD的面积;(3)设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH对称轴,垂足为H,若DPH与AOB相似,求点P的坐标.【答案】:(1)抛物线的表达式为(2)1(3)点P的坐标为(5,8),.【解析】:(1)由题意得:得:,所以抛物线的表达式为.(2)由(1)得D(2,1),作DTy轴于点T, 则ABD的面积=.(3)令P.由DPH与AOB相似,易知AOB=PHD=90°,所以或,解得:或,所以点P的坐标为(5,8),.图5例5、平面直角坐标系xOy中(如图8)
5、,已知抛物线经过点A(1,0)和B(3,0),与y轴相交于点C,顶点为P (1)求这条抛物线的表达式和顶点P的坐标; (2)点E在抛物线的对称轴上,且EA=EC,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,MEQ=NEB,求点Q的坐标【答案】:(1)P的坐标是(2,-1)(2)m=2(3),点E的坐标为(5,8)【解析】:(1)二次函数的图像经过点A(1,0)和B(3,0),解得:, 这条抛物线的表达式是.顶点P的坐标是(2,-1)(2)抛物线的对称轴是直线,设点E的坐标是(2,m)根据题意得: ,解得:m=2,点E的坐标为(2,2)(3)解
6、法一:设点Q的坐标为,记MN与x轴相交于点F作QDMN,垂足为D, 则,,QDE=BFE=90°,QED=BEF,QDEBFE,解得(不合题意,舍去),点E的坐标为(5,8)解法二:记MN与x轴相交于点F联结AE,延长AE交抛物线于点Q,AE=BE, EFAB,AEF=NEB,又AEF=MEQ,QEM=NEB,点Q是所求的点,设点Q的坐标为,作QHx轴,垂足为H,则QH=,OH=t,AH=t-1,EFx轴,EF QH,解得(不合题意,舍去),点E的坐标为(5,8)例6、在平面直角坐标系xOy中,已知点B(8,0)和点C(9,)抛物线(a,c是常数,a0)经过点B、C,且与x轴的另一交
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料类型四抛物线型问题(解析版)
限制150内