九年级数学下册全册教案 (2)知识讲解.doc
《九年级数学下册全册教案 (2)知识讲解.doc》由会员分享,可在线阅读,更多相关《九年级数学下册全册教案 (2)知识讲解.doc(124页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。九年级数学下册全册教案 (2)-义务教育课程标准人教版数学教案九年级下册26.1二次函数(1)教学目标:知识和能力:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围过程和方法:注重学生参与,联系实际,丰富学生的感性认识情感态度价值观:培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围教学难点:教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2试
2、将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m)12面积y(m2)482x的值是否可以任意取?有限定范围吗?3我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意
3、见。形成共识,x的值不可以任意取,有限定范围,其范围是0x10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(202x)(0x10)就是所求的函数关系式二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1商品的利润与售价、进价以及销售量之间有什么关系?利润=(售价进价)销售量2如果不降低售价,该商品每件利
4、润是多少元?一天总的利润是多少元?108=2(元),(108)100=200(元)3若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?(108x);(100100x)4x的值是否可以任意取?如果不能任意取,请求出它的范围,x的值不能任意取,其范围是0x25若设该商品每天的利润为y元,求y与x的函数关系式。y=(108x)(100100x)(0x2)将函数关系式y=x(202x)(0x10化为:y=2x220x(0x10)(1)将函数关系式y=(108x)(100100x)(0x2)化为:y=100x2100x20D(0x2)(2)三、观察;概括1.教师引导学生观察函数关系式
5、(1)和(2),提出以下问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个?(各有1个)(2)多项式2x220和100x2100x200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。2二次函数定义:形如y=ax2bxc(a、b、c是常数,a0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项四、课堂练习P3练习第1,2题。五、小结1、请叙述二次函数的
6、定义2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式教学反思:26.1二次函数(2)教学目标:知识和能力:使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念过程和方法:使学生经历、探索二次函数y=ax2图象性质的过程情感态度价值观:培养学生观察、思考、归纳的良好思维习惯教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点教学难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。教学过程:一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观
7、察、分析、归纳得到一次函数的性质)2我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:x3210123y9410149(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称
8、轴,且对称轴和图象有一点交点。抛物线概念:像这样的曲线通常叫做抛物线。顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点三、做一做1在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3将所画的四个函数的图象作比较,你又能发现什么?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是
9、抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。四、归纳、概括函数yx2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数yx2、y=-x2、y2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条_,它关于_对称,它的顶点坐标是_。如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察yx2、y2x2的图象,填空;当a0时,抛物线y=ax2开口_,在对称轴的左边,曲线自左向右_;在对称轴的右边,曲线自左向右_,_是抛物线上位置最低的点。图象的这些特点反映了函数的什么
10、性质?先让学生观察下图,回答以下问题;(1)XA、XB大小关系如何?是否都小于0?(2)yA、yB大小关系如何?(3)XC、XD大小关系如何?是否都大于0?(4)yC、yD大小关系如何?(XAXB,且XA0,XByB;XC0,XD0,yCyD)其次,让学生填空。当XO时,函数值y随X的增大而_;当X_时,函数值y=ax2(a0)取得最小值,最小值y=_以上结论就是当a0时,函数y=ax2的性质。思考以下问题:观察函数y-x2、y=-2x2的图象,试作出类似的概括,当aO时,抛物线yax2有些什么特点?它反映了当aO时,函数y=ax2具有哪些性质?让学生讨论、交流,达成共识,当aO时,抛物线y=
11、ax2开口向上,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降,顶点抛物线上位置最高的点。图象的这些特点,反映了当aO时,函数y=ax2的性质;当xO时,函数值y随x的增大而减小,当x=0时,函数值yax2取得最大值,最大值是y0。作业:教科书P14:3、4教学反思:26.1二次函数(3)教学目标:知识和能力:使学生能利用描点法正确作出函数yax2b的图象。过程和方法:让学生经历二次函数yax2bxc性质探究的过程,理解二次函数yax2b的性质及它与函数yax2的关系。情感态度价值观:师生互动,学生动手操作,体验成功的喜悦教学重点:会用描点法画出二次函数yax2b的图象,理
12、解二次函数yax2b的性质,理解函数yax2b与函数yax2的相互关系教学难点:正确理解二次函数yax2b的性质,理解抛物线yax2b与抛物线yax2的关系教学过程:一、提出问题1二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_,函数yax2与x_时,取最_值,其最_值是_。2二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?(画出函数y2x2和函数y2x2的图象,并加以比较)问题2,你能在同一
13、直角坐标系中,画出函数y2x2与y2x21的图象吗?教学要点1先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y2x2的图象。2教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y2x21的对应值表,并让学生画出函数y2x21的图象3教师写出解题过程,同学生所画图象进行比较。解:(1)列表:x3210123yx2188202818yx211993l3919(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y2x2和y2x21的图象。(图象略)问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反
14、映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当x依次取3,2,1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y2x21的函数值都比函数y2x2的函数值大1。教师引导学生观察函数y2x21和y2x2的图象,先研究点(1,2)和点(1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y2x21的图象上的点都是由函数y2x2的图象上的相应点向上移动了一个单位。问题4:函数y2x21和y2x2的图象有什么联系?由问题3的探索,可以得到结论:函数y2x21的图象可以看
15、成是将函数y2x2的图象向上平移一个单位得到的。问题5:现在你能回答前面提出的第2个问题了吗?让学生观察两个函数图象,说出函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。问题6:你能由函数y2x2的性质,得到函数y2x21的一些性质吗?完成填空:当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_以上就是函数y2x21的性质。三、做一做问题7:先在同一直角坐标系中画出函数y2x22与函数y2x2的图象,再作比较,说说它们有什么联系和
16、区别?教学要点1在学生画函数图象的同时,教师巡视指导;2让学生发表意见,归纳为:函数y2x22与函数y2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y2x22的图象可以看成是将函数y2x2的图象向下平移两个单位得到的。问题8:你能说出函数y2x22的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?教学要点1让学生口答,函数y2x22的图象的开口向上,对称轴为y轴,顶点坐标是(0,2);2分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x0时,函数值y随x的增大而减小;当x0时,函数值y随x的增大而增大,当x0时,函数取得最小值,最小值y2。问题9:在同一直角坐标系中
17、。函数yx22图象与函数yx2的图象有什么关系?要求学生能够画出函数yx2与函数yx22的草图,由草图观察得出结论:函数y1/3x22的图象与函数yx2的图象的开口方向、对称轴相同,但顶点坐标不同,函数yx22的图象可以看成将函数yx2的图象向上平移两个单位得到的。问题10:你能说出函数yx22的图象的开口方向、对称轴和顶点坐标吗?函数yx22的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)问题11:这个函数图象有哪些性质?让学生观察函数yx22的图象得出性质:当x0时,函数值y随x的增大而增大;当x0时,函数值y随x的增大而减小;当x0时,函数取得最大值,最大值y2。四、练习:P7练习。
18、五、小结1在同一直角坐标系中,函数yax2k的图象与函数yax2的图象具有什么关系?2你能说出函数yax2k具有哪些性质?教学反思:26.1二次函数(4)教学目标:知识和能力:1使学生能利用描点法画出二次函数ya(xh)2的图象过程和方法:让学生经历二次函数ya(xh)2性质探究的过程,理解函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。情感态度价值观:教学重点:会用描点法画出二次函数ya(xh)2的图象,理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系教学难点:理解二次函数ya(xh)2的性质,理解二次
19、函数ya(xh)2的图象与二次函数yax2的图象的相互关系教学过程:一、提出问题1在同一直角坐标系内,画出二次函数yx2,yx21的图象,并回答:(1)两条抛物线的位置关系。(2)分别说出它们的对称轴、开口方向和顶点坐标。(3)说出它们所具有的公共性质。2二次函数y2(x1)2的图象与二次函数y2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题?(画出二次函数y2(x1)2和二次函数y2x2的图象,并加以观察)问题2:你能在同一直角坐标系中,画出二次函数y2x2与y2(x1)2的图象吗?教学要点1让
20、学生完成列表。2让学生在直角坐标系中画出图来:3教师巡视、指导。问题3:现在你能回答前面提出的问题吗?开口方向对称轴顶点坐标y2x2y2(x1)2教学要点1教师引导学生观察画出的两个函数图象根据所画出的图象,完成以下填空:2让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y2(x1)2与y2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y2(x一1)2的图象可以看作是函数y2x2的图象向右平移1个单位得到的,它的对称轴是直线x1,顶点坐标是(1,0)。问题4:你可以由函数y2x2的性质,得到函数y2(x1)2的性质吗?教学要点1.教师引导学生回顾二次函数y2x2的性质,并观
21、察二次函数y2(x1)2的图象;2让学生完成以下填空:当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大;当x_时,函数取得最_值y_。三、做一做问题5:你能在同一直角坐标系中画出函数y2(x1)2与函数y2x2的图象,并比较它们的联系和区别吗?教学要点1在学生画函数图象的同时,教师巡视、指导;2请两位同学上台板演,教师讲评;3让学生发表不同的意见,归结为:函数y2(x1)2与函数y2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y2(x1)2的图象可以看作是将函数y2x2的图象向左平移1个单位得到的。它的对称轴是直线x1,顶点坐标是(1,0)。问题6;你能由函数y2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学下册全册教案 2知识讲解 九年级 数学 下册 教案 知识 讲解
限制150内