《中考课件初中数学总复习资料》专题12 圆的有关性质与计算 (解析版).doc
《《中考课件初中数学总复习资料》专题12 圆的有关性质与计算 (解析版).doc》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题12 圆的有关性质与计算 (解析版).doc(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、决胜2020中考数学压轴题全揭秘精品专题12 圆的有关性质与计算【典例分析】【考点1】垂径定理【例1】(2019·湖北中考真题)如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,点是的中点,且,则这段弯路所在圆的半径为()ABCD【答案】A【解析】【分析】根据题意,可以推出ADBD20,若设半径为r,则ODr10,OBr,结合勾股定理可推出半径r的值【详解】解:,在中,设半径为得:,解得:,这段弯路的半径为故选:A【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度【变式1-1】(2019·四川中考真题)如图,AB,
2、AC分别是O的直径和弦,于点D,连接BD,BC,且,则BD的长为( )AB4CD4.8【答案】C【解析】【分析】先根据圆周角定理得ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到,然后利用勾股定理计算BD的长【详解】AB为直径,在中,故选C【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径也考查了垂径定理【变式1-2】(2019·四川中考真题)如图,的直径垂直于弦,垂足是点,则的长为( )ABC6D12【答案】A【解析】【分析】
3、先根据垂径定理得到,再根据圆周角定理得到,可得为等腰直角三角形,所以,从而得到的长【详解】,AB为直径,BOC和A分别为所对的圆心角和圆周角,A=22.5°,为等腰直角三角形,OC=6,.故选A【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧【考点2】弧、弦、圆心角之间的关系【例2】(2019·四川自贡中考真题)如图,中,弦与相交于点,连接.求证:;.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由AB=CD知,即,据此可得答案;(2)由知AD=
4、BC,结合ADE=CBE,DAE=BCE可证ADECBE,从而得出答案【详解】证明(1)AB=CD,即,;(2),AD=BC,又ADE=CBE,DAE=BCE,ADECBE(ASA),AE=CE【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,圆心角相等,所对的弧相等,所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等【变式2-1】(2018·黑龙江中考真题)如图,在O中,AB=2AC,ADOC于D求证:AB=2AD【答案】证明见解析【解析】【分析】延长AD交 O于E,可得、AB=AE,可得出结论.【详解】延长AD交O于E,OCAD,A
5、E=2AD,AB=AE,AB=2AD【点睛】本题主要考查垂径定理及弧、弦、圆心角之间的关系,灵活做辅助线是解本题的关键.【变式2-2】(2019·江苏中考真题)如图,O的弦AB、CD的延长线相交于点P,且ABCD求证PAPC【答案】见解析.【解析】【分析】连接AC,由圆心角、弧、弦的关系得出,进而得出,根据等弧所对的圆周角相等得出CA,根据等角对等边证得结论【详解】解:如图,连接.,.,即.【点睛】本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键【考点3】圆周角定理及其推论【例3】(2019·陕西中考真题)如图,AB是O的直径,E
6、F,EB是O的弦,且EF=EB,EF与AB交于点C,连接OF,若AOF=40°,则F的度数是( )A20°B35°C40°D55°【答案】B【解析】【分析】连接FB,由邻补角定义可得FOB=140°,由圆周角定理求得FEB=70°,根据等腰三角形的性质分别求出OFB、EFB的度数,继而根据EFOEBF-OFB即可求得答案.【详解】连接FB,则FOB=180°-AOF=180°-40°=140°,FEBFOB=70°,FOBO,OFBOBF=(180°-FOB)
7、47;2=20°,EFEB,EFBEBF=(180°-FEB)÷2=55°,EFOEBF-OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.【变式3-1】(2019·北京中考真题)已知锐角AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN根据以上作图过程及所作图形,下列结论中错误的是( )A
8、COM=CODB若OM=MN,则AOB=20°CMNCDDMN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得【详解】解:由作图知CM=CD=DN,COM=COD,故A选项正确;OM=ON=MN,OMN是等边三角形,MON=60°,CM=CD=DN,MOA=AOB=BON=MON=20°,故B选项正确;MOA=AOB=BON=20°,OCD=OCM=80°,MCD=160°,又CMN=AON=20°,MCD+CMN=180°,MNCD,故C选项正确;MC+CD+D
9、NMN,且CM=CD=DN,3CDMN,故D选项错误;故选:D【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点【变式3-2】(2019·湖北中考真题)如图,点,均在上,当时,的度数是( )ABCD【答案】A【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出的度数,然后根据圆周角定理可得到的度数【详解】,故选A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半【考点4】圆内接四边形【例4】(2019·贵州中考真题)如图,四边形ABCD为O的内接四边形,A100°,则DCE
10、的度数为_;【答案】100°【解析】【分析】直接利用圆内接四边形的性质,即可解答【详解】四边形ABCD为O的内接四边形,DCEA100°,故答案为100°【点睛】此题考查圆内接四边形的性质,难度不大【变式4-1】(2019·甘肃中考真题)如图,四边形内接于,若,则( )ABCD【答案】D【解析】【分析】直接利用圆内接四边形的对角互补计算C的度数【详解】四边形ABCD内接于O,A400,C18004001400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补【变式4-2】(2019·四川中考真题)如图,正五边形
11、内接于,为上的一点(点不与点重合),则的度数为( )ABCD【答案】B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.【考点5】正多边形和圆【例5】(2019·山东中考真题)如图,五边形 ABCDE 是O 的内接正五边形, AF 是O 的直径,则 BDF 的度数是_°【答案】54【解析】【分析】连接AD,根据圆周角定理得到ADF=90
12、76;,根据五边形的内角和得到ABC=C=108°,求得ABD=72°,由圆周角定理得到F=ABD=72°,求得FAD=18°,于是得到结论【详解】连接AD,AF是O的直径,ADF=90°,五边形ABCDE是O的内接正五边形,ABC=C=108°,ABD=72°,F=ABD=72°,FAD=18°,CDF=DAF=18°,BDF=36°+18°=54°,故答案为54【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题【变式5-1】(20
13、19·山东中考真题)若正六边形的内切圆半径为2,则其外接圆半径为_【答案】【解析】【分析】根据题意画出草图,可得OG=2,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接、,作于;则,六边形正六边形,是等边三角形,正六边形的内切圆半径为2,则其外接圆半径为故答案为【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.【变式5-2】(2019·陕西中考真题)若正六边形的边长为3,则其较长的一条对角线长为_. 【答案】6.【解析】【分析】根据正六边形的半径就是其外接圆半径,则最长的对角线就是外接圆的直
14、径,据此进行求解即可.【详解】正六边形的中心角为=60°,AOB是等边三角形,OB=AB=3,BE=2OB=6,即正六边形最长的对角线为6,故答案为:6.【点睛】本题考查了正多边形与圆,正确把握正六边形的中心角、半径与正六边形的最长对角线的关系是解题的关键.【考点6】弧长和扇形的面积计算(含阴影部分面积计算)【例6】(2019·广西中考真题)如图,是的内接三角形,为直径,平分,交于点,交于点,连接(1)求证:;(2)若,求的长(结果保留)【答案】(1)见解析;(2)的长【解析】【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接,根据平角定义得到,根据圆周角
15、定理得到,得到,根据弧长公式即可得到结论.【详解】(1)证明:平分,;(2)解:连接,为直径,的长【点睛】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.【变式6-1】(2019·湖北中考真题)如图,等边三角形的边长为2,以为圆心,1为半径作圆分别交,边于,再以点为圆心,长为半径作圆交边于,连接,那么图中阴影部分的面积为_. 【答案】 .【解析】【分析】过作于,于,根据等边三角形的性质得到,求得,根据三角形的面积和扇形的面积公式即可得到结论【详解】过作于,于,等边三角形的边长为2,图中阴影部分的面积,故答案为:【点睛】本题考查了扇形的面积的计算,等
16、边三角形的性质,正确的作出辅助线是解题的关键【变式6-2】(2019·四川中考真题)如图,在中,将AOC绕点O顺时针旋转后得到,则AC边在旋转过程中所扫过的图形的面积为( )ABCD【答案】B【解析】【分析】根据旋转的性质可以得到阴影部分的面积扇形OAB的面积扇形OCD的面积,利用扇形的面积公式即可求解【详解】解:阴影部分的面积扇形OAB的面积扇形OCD的面积故选:B【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积扇形OAB的面积扇形OCD的面积是解题关键【考点7】与圆锥有关的计算【例7】(2019·湖南中考真题)如图,在等腰中,AD是的角平分线,且,以
17、点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F,(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h【答案】(1);(2).【解析】【分析】(1)利用等腰三角形的性质得到,则可计算出,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,解得,然后利用勾股定理计算
18、这个圆锥的高h【详解】在等腰中,AD是的角平分线,由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积.(2)设圆锥的底面圆的半径为r,根据题意得,解得,这个圆锥的高【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了等腰三角形的性质和扇形的面积公式【变式7-1】(2019·广西中考真题)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是_度【答案】90【解析】【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解【详解】解:设圆锥的母线为a,根据勾股定理得,
19、,设圆锥的侧面展开图的圆心角度数为 ,根据题意得 ,解得 ,即圆锥的侧面展开图的圆心角度数为故答案为90【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长【变式7-2】(2019·辽宁中考真题)圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为_【答案】3【解析】【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解关于r的方程即可【详解】设该圆锥的底面半径为r,根据题意得,解得故答案为3【点睛】本题考查圆锥的计算,解
20、题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长【变式7-3】(2019·西藏中考真题)如图,从一张腰长为,顶角为的等腰三角形铁皮中剪出一个最大的扇形,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()ABCD【答案】A【解析】【分析】根据等腰三角形的性质得到的长,再利用弧长公式计算出弧的长,设圆锥的底面圆半径为,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到【详解】过作于,弧的长,设圆锥的底面圆的半径为,则,解得故选:A【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的
21、弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长【达标训练】一、单选题1(2019·山东中考真题)如图,是的内接三角形,过点的圆的切线交于点,则的度数为( )A32°B31°C29°D61°【答案】A【解析】【分析】根据题意连接OC,为直角三角形,再根据BC的优弧所对的圆心角等于圆周角的2倍,可计算的的度,再根据直角三角形可得的度数.【详解】根据题意连接OC.因为所以可得BC所对的大圆心角为 因为BD为直径,所以可得 由于为直角三角形所以可得 故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2(2019
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题12圆的有关性质与计算(解析版)
限制150内