《中考课件初中数学总复习资料》专题14 整式的乘法与因式分解(原卷版).docx
《《中考课件初中数学总复习资料》专题14 整式的乘法与因式分解(原卷版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题14 整式的乘法与因式分解(原卷版).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题14 整式的乘法与因式分解知识点1:整式的乘法1. 同底数幂的乘法法则: (m,n都是正数)2.幂的乘方法则:(m,n都是正数) 3.积的乘方:(ab)n=anbn 4. 整式的乘法法则(1) 单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。(2)单项式与多项式相乘法则:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。(3)多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项
2、,再把所得的积相加。5.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a0,m、n都是正数,且m>n).在应用时需要注意以下几点:法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0.任何不等于0的数的0次幂等于1,即。任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a0,p是正整数),;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的。运算要注意运算顺序。6整式的除法法则(1)单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数
3、作为商的一个因式;(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。知识点2:乘法公式1.平方差公式: 2.完全平方公式: 3.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。知识点3:1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.分解因式的一般方法:(1)提公共因式法;(2)运用公式法;(3)十字相乘法;(4)其他方法。一、乘法公式的灵活记忆与使用1.记忆几个重要的乘法公式(1)(a+b)(a-b)=a2-b2 (2)(a+b)2=a2+
4、2ab+b2 (3)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(4)(a-b)2=a2-2ab+b2 (5)(a+b)(a2-ab+b2)=a3+b3 (6)(a-b)(a2+ab+b2)=a3b3 2.乘法公式的灵活变式 位置变化,(x+y)(-y+x)=x2-y2 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2 指数变化,(x2+y2)(x2-y2)=x4-y4 系数变化,(2a+b)(2a-b)=4a2-b2 换式变化,xy+(z+m)xy-(z+m)=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2
5、y2-z2-2zm-m2 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4 逆用公式变化,(x-y+z)2-(x+y-z)2=(x-y+z)+(x+y-z)(x-y+z)-(x+y-z) =2x(-2y+2z)=-4xy+4xz二、怎样熟练运用乘法公式1.明确公式的结构特征是正确运用公式的前提,如平方差公式(a+b)(a-b)=a2-b2 的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两
6、项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方明确了公式的结构特征就能在各种情况下正确运用公式2.要理解字母的广泛含义。乘法公式中的字母a、b可以是具体的数,也可以是单项式或多项式理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式如计算:(x+2y3z)2,若视a=x+2y,b=3z,则就可用(ab)2=a22ab+b2来解了。3.熟悉常见的几种变化.有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点常见的几种变化是:(1)位置变化. 如(3x+5y)(5y3x)交换3x和5y的位置后变为(5y+3
7、x)(5y3x)就可用平方差公式计算了。(2)符号变化. 如(2m7n)(2m7n)变为(2m+7n)(2m7n)后就可用平方差公式求解了。(3)数字变化. 如98×102,992,912等分别变为(1002)(100+2),(1001)2,(90+1)2后就能够用乘法公式加以解答了(4)系数变化. 如(4m+)(2m)变为2(2m+)(2m)后即可用平方差公式进行计算了(5)项数变化. 如(x+3y+2z)(x3y+6z)变为(x+3y+4z2z)(x3y+4z+2z)后再适当分组就可以用乘法公式来解了4.注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题14整式的乘法与因式分解(原卷版)
限制150内