《中考课件初中数学总复习资料》专题17 二次函数的面积问题(原卷版).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《中考课件初中数学总复习资料》专题17 二次函数的面积问题(原卷版).doc》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题17 二次函数的面积问题(原卷版).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、决胜2021中考数学压轴题全揭秘精品专题17二次函数的面积问题【考点1】二次函数的线段最值问题【例1】(2020·湖北荆门·中考真题)如图,抛物线与x轴正半轴交于点A,与y轴交于点B(1)求直线的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物线的解析式【变式1-1】(2020·前郭尔罗斯蒙古族自治县哈拉毛都镇蒙古族中学九年级期中)如图,二次函数的图象交x轴于点,交y轴于
2、点C点是x轴上的一动点,轴,交直线于点M,交抛物线于点N (1)求这个二次函数的表达式;(2)若点P仅在线段上运动,如图1求线段的最大值;若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由【变式1-2】如图1,已知抛物线y=x2+mx+m2的顶点为A,且经过点B(3,3)(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中
3、,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由【考点2】二次函数的面积定值问题【例2】已知二次函数(1)图象经过点时,则_;(2)当时,函数值y随x的增大而减小,求m的取值范围;(3)以抛物线的顶点A为一个顶点作该抛物线的内接正三角形(M,N两点在抛物线上),请问:的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由【变式2-1】(2020·湖南九年级其他模拟)若抛物线L:yax2+bx+c(a,b,c是常数,a0)与直线l:yax+b满足a2+b22a(2cb),则称此直线l与该抛物线L具有“支干”关系此时,直线l叫做抛物线L的“支线”,抛物线L
4、叫做直线l的“干线”(1)若直线yx2与抛物线yax2+bx+c具有“支干”关系,求“干线”的最小值;(2)若抛物线yx2+bx+c的“支线”与y的图象只有一个交点,求反比例函数的解析式; (3)已知“干线”yax2+bx+c与它的“支线”交于点P,与它的“支线”的平行线l:yax+4a+b交于点A,B,记ABP得面积为S,试问:的值是否为定值?若是,请求出这个定值;若不是,请说明理由【变式2-2】(2020·山东济南·中考真题)如图1,抛物线yx2bxc过点A(1,0),点B(3,0)与y轴交于点C在x轴上有一动点E(m,0)(0m3),过点E作直线lx轴,交抛物线于点M
5、(1)求抛物线的解析式及C点坐标;(2)当m1时,D是直线l上的点且在第一象限内,若ACD是以DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设AEM的面积为S1,MON的面积为S2,若S12S2,求m的值【考点3】二次函数的面积最值问题【例3】(2020·四川绵阳·中考真题)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的
6、动点,且在直线AC上方,当PAB面积最大时,求点P的坐标及PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标【变式3-1】(2020·重庆中考真题)如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,
7、D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由【变式3-2】(2020·江苏宿迁·中考真题)二次函数的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当CEQ的面积为12时,求点P的坐标【考点4】二次函数面积的其它问题【例4】(2020·辽宁鞍山·中考真题)在矩形中,点
8、E是射线上一动点,连接,过点B作于点G,交直线于点F(1)当矩形是正方形时,以点F为直角顶点在正方形的外部作等腰直角三角形,连接如图1,若点E在线段上,则线段与之间的数量关系是_,位置关系是_;如图2,若点E在线段的延长线上,中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E在线段上,以和为邻边作,M是中点,连接,求的最小值【变式4-1】(2020·湖北中考真题)已知抛物线y=ax2-2ax+c过点A-1,0和C0,3,与x轴交于另一点B,顶点为D(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EFBC,垂足为
9、F,EMx轴,垂足为M,交BC于点G当BG=CF时,求EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使OPB=AHB?若存在,求出点P的坐标:若不存在,请说明理由【变式4-2】(2020·山东日照·九年级二模)如图,二次函数yax2+bx+c的图象与x轴交于点A(2,0)和点B(8,0),与y轴交于点C(0,8),连接AC,D是抛物线对称轴上一动点,连接AD,CD,得到ACD(1)求该抛物线的函数解析式(2)ACD周长能否取得最小值,如果能,请求出D点的坐标;如果不能,请说明理由(3)在(2)的条件下,在抛物线上是否存在点E,使得
10、ACE与ACD面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由1(广东梅州·中考真题)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上 (1)b =_,c =_,点B的坐标为_;(直接填写结果)(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标2(2020·湖北武汉·九年
11、级一模)已知抛物线yax2bxc的顶点为D (,),经过点C (0,1),且与x轴交于A、B两点(A在B的左侧)(1) 求抛物线的解析式:(2) P为抛物线上一点,连CP交OD于点Q,若SCOQSPDQ,求P点的横坐标;(3)点M为直线BC下方抛物线上一点,过M的直线与x轴、y轴分别交于E、F,且与抛物线有且只有一个公共点 若FCMOEF,求点M的坐标3(2020·广东九年级一模)如图,抛物线yax22xc(a0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OBOC3(1)求该抛物线的函数解析式;(2)连接BC,点D是直线BC上方抛物线上的点,连接OD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题17二次函数的面积问题(原卷版)
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内