《中考课件初中数学总复习资料》专题24 矩形(解析版).docx
《《中考课件初中数学总复习资料》专题24 矩形(解析版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题24 矩形(解析版).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24 矩形问题1矩形的定义:有一个角是直角的平行四边形叫做矩形。2矩形的性质(1)矩形的四个角都是直角; (2)矩形的对角线平分且相等。3矩形判定定理(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形; (3)有三个角是直角的四边形是矩形。4矩形的面积:S=ab(a、b分别表示矩形的长、宽)【例题1】(2020湘西州)如图,在平面直角坐标系xOy中,矩形ABCD的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边ABa,BCb,DAOx,则点C到x轴的距离等于()Aacosx+bsinxBacosx+bcosxCasinx+bcosxDasinx+
2、bsinx【答案】A【解析】作CEy轴于E,由矩形的性质得出CDABa,ADBCb,ADC90°,证出CDEDAOx,由三角函数定义得出ODbsinx,DEacosx,进而得出答案作CEy轴于E,如图:四边形ABCD是矩形,CDABa,ADBCb,ADC90°,CDE+ADO90°,AOD90°,DAO+ADO90°,CDEDAOx,sinDAO=ODAD,cosCDE=DECD,ODAD×sinDAObsinx,DED×cosCDEacosx,OEDE+ODacosx+bsinx,点C到x轴的距离等于acosx+bsinx
3、.【对点练习】(2019贵州省铜仁市)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A360°B540°C630°D720°【答案】C【解答】一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°【例题2】(2020菏泽)如图,矩形ABCD中,AB5,AD12,点P在对角线BD上,且BPBA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为 【答案
4、】317【解析】根据矩形的性质可得BD13,再根据BPBA可得DQDP8,所以得CQ3,在RtBCQ中,根据勾股定理即可得BQ的长矩形ABCD中,AB5,AD12,BADBCD90°,BD=AB2+AD2=13,BPBA5,PDBDBP8,BABP,BAPBPADPQ,ABCD,BAPDQP,DPQDQP,DQDP8,CQDQCDDQAB853,在RtBCQ中,根据勾股定理,得BQ=BC2+CQ2=153=317【对点练习】(2019内蒙古通辽)如图,在矩形ABCD中,AD8,对角线AC与BD相交于点O,AEBD,垂足为点E,且AE平分BAC,则AB的长为 【答案】【解答】四边形AB
5、CD是矩形AOCOBODO,AE平分BAOBAEEAO,且AEAE,AEBAEO,ABEAOE(ASA)AOAB,且AOOBAOABBODO,BD2AB,AD2+AB2BD2,64+AB24AB2,AB【例题3】(2020聊城)如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若ADAF,求证:四边形ABFC是矩形【答案】见解析。【解析】根据平行四边形的性质得到两角一边对应相等,利用AAS判定ABEFCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形证明:四边形ABCD是平行
6、四边形,ABCD,ABCD,BAECFE,ABEFCE,E为BC的中点,EBEC,ABEFCE(AAS),ABCFABCF,四边形ABFC是平行四边形,BCAF,四边形ABFC是矩形【对点练习】(2019湖北省鄂州市)如图,矩形ABCD中,AB8,AD6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F(1)求证:四边形DEBF是平行四边形;(2)当DEDF时,求EF的长【答案】见解析。【解析】根据矩形的性质得到ABCD,由平行线的性质得到DFOBEO,根据全等三角形的性质得到DFBE,于是得到四边形BEDF是平行四边形;推出四边形BEDF是菱形,得到DEBE,EFBD,OEO
7、F,设AEx,则DEBE8x根据勾股定理即可得到结论(1)证明:四边形ABCD是矩形,ABCD,DFOBEO,又因为DOFBOE,ODOB,DOFBOE(ASA),DFBE,又因为DFBE,四边形BEDF是平行四边形;(2)解:DEDF,四边形BEDF是平行四边形四边形BEDF是菱形,DEBE,EFBD,OEOF,设AEx,则DEBE8x在RtADE中,根据勾股定理,有AE2+AD2DE2x2+62(8x)2,解之得:x,DE8,在RtABD中,根据勾股定理,有AB2+AD2BD2BD,OD BD5,在RtDOE中,根据勾股定理,有DE2 OD2OE2,OE,EF2OE一、选择题1(2020怀
8、化)在矩形ABCD中,AC、BD相交于点O,若AOB的面积为2,则矩形ABCD的面积为()A4B6C8D10【答案】C【解析】根据矩形的性质得到OAOBOCOD,推出SADOSBCOSCDOSABO2,即可求出矩形ABCD的面积四边形ABCD是矩形,对角线AC、BD相交于点O,ACBD,且OAOBOCOD,SADOSBCOSCDOSABO2,矩形ABCD的面积为4SABO8,2(2020达州)如图,BOD45°,BODO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F下列4个判断:OE平分BOD;OFBD;DF=2AF;若点G是线段OF的中点,则AE
9、G为等腰直角三角形正确判断的个数是()A4B3C2D1【答案】A【解析】由矩形得EBEDEA,BAD为直角,再由等腰三角形的三线合一性质可判断的正误;证明AOFABD,便可判断的正误;连接BF,由线段的垂直平分线得BFDF,由前面的三角形全等得AFAB,进而便可判断的正误;由直角三角形斜边上的中线定理得AGOG,进而求得AGE45°,由矩形性质得EDEA,进而得EAD22.5°,再得EAG90°,便可判断的正误四边形ABCD是矩形,EBED,BODO,OE平分BOD,故正确;四边形ABCD是矩形,OADBAD90°,ABD+ADB90°,OBO
10、D,BEDE,OEBD,BOE+OBE90°,BOEBDA,BOD45°,OAD90°,ADO45°,AOAD,AOFABD(ASA),OFBD,故正确;AOFABD,AFAB,连接BF,如图1,BF=2AF,BEDE,OEBD,DFBF,DF=2AF,故正确;根据题意作出图形,如图2,G是OF的中点,OAF90°,AGOG,AOGOAG,AOD45°,OE平分AOD,AOGOAG22.5°,FAG67.5°,ADBAOF22.5°,四边形ABCD是矩形,EAED,EADEDA22.5°,EAG
11、90°,AGEAOG+OAG45°,AEG45°,AEAG,AEG为等腰直角三角形,故正确;故选:A3.(2019广东广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE3,AF5,则AC的长为()A4B4C10D8【答案】A 【解析】连接AE,由线段垂直平分线的性质得出OAOC,AECE,证明AOFCOE得出AFCE5,得出AECE5,BCBE+CE8,由勾股定理求出AB4,再由勾股定理求出AC即可连接AE,如图:EF是AC的垂直平分线,OAOC,AECE,四边形ABCD是矩形,B90°,ADBC,OAFOCE,在A
12、OF和COE中,AOFCOE(ASA),AFCE5,AECE5,BCBE+CE3+58,AB4,AC4;故选:A4(2019山东泰安)如图,矩形ABCD中,AB4,AD2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A2B4CD【答案】D 【解析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BPP1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1P1P2,故BP的最小值为BP1的长,由勾股定理求解即可如图:当点F与点C重合时,点P在P1处,CP1DP1,当点F与点E重合时,点P在P2处,EP2DP2,P1P2CE且P
13、1P2CE当点F在EC上除点C、E的位置处时,有DPFP由中位线定理可知:P1PCE且P1PCF点P的运动轨迹是线段P1P2,当BPP1P2时,PB取得最小值矩形ABCD中,AB4,AD2,E为AB的中点,CBE、ADE、BCP1为等腰直角三角形,CP12ADECDECP1B45°,DEC90°DP2P190°DP1P245°P2P1B90°,即BP1P1P2,BP的最小值为BP1的长在等腰直角BCP1中,CP1BC2BP12PB的最小值是25.(2019湖北荆州)如图,矩形ABCD的顶点A,B,C分别落在MON的边OM,ON上,若OAOC,要
14、求只用无刻度的直尺作MON的平分线小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分MON有以下几条几何性质:矩形的四个角都是直角,矩形的对角线互相平分,等腰三角形的“三线合一”小明的作法依据是()ABCD【答案】C【解析】四边形ABCD为矩形,AECE,而OAOC,OE为AOC的平分线二、填空题6(2020绍兴)将两条邻边长分别为2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号)2, 1, 2-1, 32, 3【答案】【解析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解如图所示:则其
15、中一个等腰三角形的腰长可以是2,1,2-1,32,不可以是37(2020泸州)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N已知AB4,BC6,则MN的长为 【解析】43【分析】延长CE、DA交于Q,延长BF和CD,交于W,根据勾股定理求出BF,根据矩形的性质求出AD,根据全等三角形的性质得出AQBC,ABCW,根据相似三角形的判定得出QMFCMB,BNEWND,根据相似三角形的性质得出比例式,求出BN和BM的长,即可得出答案【解析】延长CE、DA交于Q,如图1,四边形ABCD是矩形,BC6,BAD90°,ADBC6,ADBC,F为AD中点,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题24矩形(解析版)
限制150内