《中考课件初中数学总复习资料》专题27 涉及圆的证明与计算问题(解析版).docx
《《中考课件初中数学总复习资料》专题27 涉及圆的证明与计算问题(解析版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题27 涉及圆的证明与计算问题(解析版).docx(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题27 涉及圆的证明与计算问题圆的证明与计算是中考必考点,也是中考的难点之一。纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。一、与圆有关的概念1圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。圆的半径或直径决定圆的大小,圆心决定圆的位置。 2圆心角:顶点在圆心上的角叫做圆心角。圆心角的度数等于它所对弧的度数。3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心,叫做三角形的外心。外心是三角形三条边垂直平分
2、线的交点。外心到三角形三个顶点的距离相等。5若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。内心是三角形三个角的角平分线的交点。内心到三角形三边的距离相等。二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。3推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧4在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弧相
3、等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半6半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径7圆内接四边形的特征 圆内接四边形的对角互补;圆内接四边形任意一个外角等于它的内对角。三、点和圆、线和圆、圆和圆的位置关系1. 点和圆的位置关系 点在圆内点到圆心的距离小于半径 点在圆上点到圆心的距离等于半径 点在圆外点到圆心的距离大于半径2.直线与圆有3种位置关系如果O的半径为r,圆心O
4、到直线的距离为d,那么 直线和O相交; 直线和O相切; 直线和O相离。3圆与圆的位置关系设圆的半径为,圆的半径为,两个圆的圆心距,则:两圆外离 ;两圆外切 ;两圆相交 ;两圆内切 ;两圆内含 四、切线的规律1.切线的性质(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。2.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。3.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,并且圆心和这一点的连线平分两条切线的夹角。 四、求解圆的周长和面积的公式设圆的周长为r,则:1. 求圆的直径公式d=2r2.求
5、圆的周长公式 C=2r 3.求圆的面积公式S=r2五、解题要领1.判定切线的方法(1)若切点明确,则“连半径,证垂直”。常见手法有全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。常见手法有角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:直线所垂直的是圆的半径(过圆上一点);直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.2.与圆有关的计算计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知
6、识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:构建矩形转化线段;构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);构造垂径定理模型:弦长一半、弦心距、半径;构造勾股定理模型;构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基
7、本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。3.攻克典型基本模型图是解决圆的所有难题的宝剑类型1图形:(1)如图1,AB是O的直径,点E、C是O上的两点.基本结论有:在“AC平分BAE”;“ADCD”;“DC是O的切线”三个论断中,知二推一。(2) 如图2、3,DE等于弓形BCE的高;DC=AE的弦心距OF(或弓形BCE的半弦EF)。(3)如图(4):若CKAB于K,则:CK=CD;BK=DE;CK=BE=DC;AE+AB=2BK=2AD;ADCACBAC2=ADAB(4)在(1)中的条件、中任选两个条件,当BGCD于E时(如图5),则:DE
8、=GB;DC=CG;AD+BG=AB;ADBG=DC2 类型2图形:如图:RtABC中,ACB=90°。点O是AC上一点,以OC为半径作O交AC于点E,基本结论有:(1)在“BO平分CBA”;“BODE”;“AB是O的切线”;“BD=BC”。四个论断中,知一推三。(2)G是BCD的内心; ;BCOCDEBODE=COCE=CE2;(3)在图(1)中的线段BC、CE、AE、AD中,知二求四。(4)如图(3),若BC=CE,则:=tanADE;BC:AC:AB=3:4:5 ;(在、中知一推二)设BE、CD交于点H,,则BH=2EH类型3图形:如图:RtABC中,ABC=90°,
9、以AB为直径作O交AC于D,基本结论有:如图:(1)DE切OE是BC的中点;(2)若DE切O,则:DE=BE=CE; D、O、B、E四点共圆CED=2ACD·CA=4BE2, 图形特殊化:在(1)的条件下如图:DEABABC、CDE是等腰直角三角形;如图:若DE的延长线交AB的延长线于点F,若AB=BF,则:;类型4图形:如图,ABC中,AB=AC,以AB为直径作O,交BC于点D,交AC于点F, 基本结论有:(1)DEACDE切O;(2)在DEAC或DE切O下,有:DFC是等腰三角形;EF=EC;D是 的中点。与基本图形1的结论重合。连AD,产生母子三角形。类型5图形:以直角梯形AB
10、CD的直腰为直径的圆切斜腰于, 基本结论有:(1)如图1:AD+BCCD; COD=AEB=90°; OD平分ADC(或OC平分BCD);(注:在、及“CD是O的切线”四个论断中,知一推三)AD·BC2=R2;(2)如图2,连AE、CO,则有:COAE,COAE=2R2(与基本图形2重合)(3)如图3,若EFAB于F,交AC于G,则:EG=FG.类型6图形:如图:直线PRO的半径OB于E,PQ切O于Q,BQ交直线PQ于R。基本结论有:(1)PQ=PR (PQR是等腰三角形);(2)在“PROB”、“PQ切O”、“PQ=PR”中,知二推一(3)2PR·RE=BR
11、183;RQ=BE·2R=AB2类型7图形:如图,ABC内接于O,I为ABC的内心。基本结论有:(1)如图1,BD=CD=ID;DI2DE·DA;AIB=90°+ACB;(2)如图2,若BAC=60°,则:BD+CE=BC.类型8图形:已知,AB是O的直径,C是 中点,CDAB于D。BG交CD、AC于E、F。基本结论有:(1)CD=BG;BE=EF=CE;GF=2DE(反之,由CD=BG或BE=EF可得:C是 中点)(2)OE=AF,OEAC;ODEAGF(3)BE·BG=BD·BA(4)若D是OB的中点,则:CEF是等边三角形; 【
12、例题1】(2020武汉)如图,在半径为3的O中,AB是直径,AC是弦,D是AC的中点,AC与BD交于点E若E是BD的中点,则AC的长是()A523B33C32D42【答案】D【解析】连接OD,交AC于F,根据垂径定理得出ODAC,AFCF,进而证得DFBC,根据三角形中位线定理求得OF=12BC=12DF,从而求得BCDF2,利用勾股定理即可求得AC连接OD,交AC于F,D是AC的中点,ODAC,AFCF,DFE90°,OAOB,AFCF,OF=12BC,AB是直径,ACB90°,在EFD和ECB中DFE=ACB=90°DEF=BECDE=BE EFDECB(AA
13、S),DFBC,OF=12DF,OD3,OF1,BC2,在RtABC中,AC2AB2BC2,AC=AB2-BC2=62-22=42,【对点练习】(2019山东省聊城市)如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE如果A70°,那么DOE的度数为()A35°B38°C40°D42°【答案】C【解析】考点是圆周角定理、直角三角形的性质。连接CD,由圆周角定理得出BDC90°,求出ACD90°A20°,再由圆周角定理得出DOE2ACD40°即可,连接CD,如图所示:BC
14、是半圆O的直径,BDC90°,ADC90°,ACD90°A20°,DOE2ACD40°【例题2】(2020牡丹江)AB是O的弦,OMAB,垂足为M,连接OA若AOM中有一个角是30°,OM23,则弦AB的长为 【答案】12或4【解析】分OAM30°,AOM30°,两种情况分别利用正切的定义求解即可OMAB,AMBM,若OAM30°,则tanOAM=OMAM=23AM=33,AM6,AB2AM12;若AOM30°,则tanAOM=AMOM=AM23=33,AM2,AB2AM4【对点练习】(2019
15、安徽)如图,ABC内接于O,CAB30°,CBA45°,CDAB于点D,若O的半径为2,则CD的长为 【答案】【解析】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键连接CO并延长交O于E,连接BE,于是得到EA30°,EBC90°,解直角三角形即可得到结论连接CO并延长交O于E,连接BE,则EA30°,EBC90°,O的半径为2,CE4,BCCE2,CDAB,CBA45°,CDBC【例题3】(2020贵州黔西南)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”请研究如下
16、美丽的圆如图,线段AB是O的直径,延长AB至点C,使BCOB,点E是线段OB的中点,DEAB交O于点D,点P是O上一动点(不与点A,B重合),连接CD,PE,PC(1)求证:CD是O的切线;(2)小明在研究的过程中发现是一个确定的值回答这个确定的值是多少?并对小明发现的结论加以证明【答案】(1)见解析;(2),解析【解析】本题考查了切线的判定与性质及相似三角形的判定与性质(1)连接OD,DB,由已知可得DE垂直平分OB,于是DBDO,而OBOD,所以DBDOOB,即ODB是等边三角形,于是BDO60°,再由等腰三角形的性质及三角形的外角性质可得CDB30°,从而可得ODC9
17、0°,所以ODCD,所以CD是O的切线;(2)连接OP,由已知条件得OPOBBC2OE,再利用“两组边成比例,夹角相等”证明OEPOPC,最后由相似三角形的对应边成比例得到结论【详解】解:(1)如答图,连接OD,DB,点E是线段OB的中点,DEAB交O于点D,DE垂直平分OB,DBDODOOB,DBDOOB,ODB是等边三角形,BDODBO60°BCOBBD,且DBE为BDC的外角,BCDBDCDBODBO60°,CDB30°ODCBDOBDC60°30°90°,ODCD,CD是O的切线;(2)这个确定的值是证明:如答图,连
18、接OP,OPOBBC2OE,又COPPOE,OEPOPC,【点拨】本题考查切线的判定与性质及相似三角形的判定与性质,掌握相关性质及定理是解题的关键【对点练习】(2019湖北十堰)如图,ABC中,ABAC,以AC为直径的O交BC于点D,点E为C延长线上一点,且CDEBAC(1)求证:DE是O的切线;(2)若AB3BD,CE2,求O的半径【答案】见解析。【解析】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形(1)如图,连接OD,AD,AC是直径,ADC90°,ADBC,ABAC,CADBADBAC,CD
19、EBACCDECAD,OAOD,CADADO,ADO+ODC90°,ODC+CDE90°ODE90°又OD是O的半径DE是O的切线;(2)解:ABAC,ADBC,BDCD,AB3BD,AC3DC,设DCx,则AC3x,AD2x,CDECAD,DECAED,CDEDAE,即DE4,x,AC3x14,O的半径为7一、选择题1(2020宜昌)如图,E,F,G为圆上的三点,FEG50°,P点可能是圆心的是()A B C D【答案】C【解析】利用圆周角定理对各选项进行判断FEG50°,若P点圆心,FPG2FEG100°2(2020营口)如图,A
20、B为O的直径,点C,点D是O上的两点,连接CA,CD,AD若CAB40°,则ADC的度数是()A110°B130°C140°D160°【答案】B【解析】连接BC,如图,利用圆周角定理得到ACB90°,则B50°,然后利用圆的内接四边形的性质求ADC的度数如图,连接BC,AB为O的直径,ACB90°,B90°CAB90°40°50°,B+ADC180°,ADC180°50°130°3(2020荆门)如图,O中,OCAB,APC28
21、6;,则BOC的度数为()A14°B28°C42°D56°【答案】D【解析】根据垂径定理,可得AC=BC,APC28°,根据圆周角定理,可得BOC在O中,OCAB,AC=BC,APC28°,BOC2APC56°4(2020临沂)如图,在O中,AB为直径,AOC80°点D为弦AC的中点,点E为BC上任意一点则CED的大小可能是()A10°B20°C30°D40°【答案】C【解析】连接OD、OE,设BOEx,则COE100°x,DOE100°x+40°
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题27涉及圆的证明与计算问题(解析版)
限制150内