《中考课件初中数学总复习资料》专题33 中考几何折叠翻折类问题(原卷版).docx
《《中考课件初中数学总复习资料》专题33 中考几何折叠翻折类问题(原卷版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题33 中考几何折叠翻折类问题(原卷版).docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题33 中考几何折叠翻折类问题1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。(2)对称轴与连结“对应点的线段”垂直。(3)对应点到对称轴的距离相等。(4)对应点的连线互相平行。也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。(2)折叠类问题中,如果翻折的直角,那么可以
2、构造三垂直模型,利用三角形相似解决问题。(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。这对解决问题有很大帮助。(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。一般试题考查点圆最值问题。(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。【例题1】(2020哈尔滨)如图,在RtABC中,BAC90°,B50°,ADBC,垂足为D,ADB与ADB'关于直线AD对称,点B的对称点是点B',则CAB
3、39;的度数为()A10°B20°C30°D40°【对点练习】(2019重庆)如图,在ABC中,ABC=45°,AB=3,ADBC于点D,BEAC于点E,AE=1,连接DE,将AED沿直线沿直线AE翻折至ABC所在的平面内,得到AEF,连接DF,过点D作DGDE交BE于点G.则四边形DFEG的周长为( )A.8 B. C. D. 【例题2】(2020贵州黔西南)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC2,则线段EG的长度为_【对点练习】(2019四川内江
4、)如图,在菱形ABCD中,simB,点E,F分别在边AD、BC上,将四边形AEFB沿EF翻折,使AB的对应线段MN经过顶点C,当MNBC时,的值是 【例题3】(2020衢州模拟)如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处如图2(1)求证:EG=CH;(2)已知AF=,求AD和AB的长【对点练习】(2019徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF求证:(1)ECBFCG;(2)EBCFGC一、选择题1.(
5、2020青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O若AE5,BF3,则AO的长为()A5B325C25D452(2020枣庄)如图,在矩形纸片ABCD中,AB3,点E在边BC上,将ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若EACECA,则AC的长是()A33B4C5D63(2020广东)如图,在正方形ABCD中,AB3,点E,F分别在边AB,CD上,EFD60°若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A1B2C3D24如图,三角形纸片ABC,AB=AC,BAC=90°,点E为AB中点沿过点E
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题33中考几何折叠翻折类问题(原卷版)
限制150内