《中考课件初中数学总复习资料》专题24 圆(原卷版).docx
《《中考课件初中数学总复习资料》专题24 圆(原卷版).docx》由会员分享,可在线阅读,更多相关《《中考课件初中数学总复习资料》专题24 圆(原卷版).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24 圆知识点1:圆的概念 1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。知识点2:点与圆的位置关系圆和点的位置关系:以点P与圆O为例(设P是一点,则PO
2、是点到圆心的距离),P在O外,POr;P在O上,POr;P在O内,POr。知识点3:直线与圆的位置关系直线与圆有3种位置关系:(1)无公共点为相离;(2)有两个公共点为相交,这条直线叫做圆的割线;(3)圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。知识点4:圆与圆的位置关系两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且Rr,圆心距为L,则(1)外离LR+r;(2)外切L=R+r;(3)相交R-rLR+r;(
3、4)内切L=R-r;(5)内含LR-r。 知识点5:垂径定律定律垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。知识点6:圆心角定律在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等知识点7:圆周角定律(1)在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半(2)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径知识点8:圆内接多边形1.圆内接正三角形形2.圆内接正四边形形3.圆内接正六边形形知识点9:判定定理与切线的性质1.切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。2.切线的性质:(1)经过切点垂直于
4、这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。知识点10:圆的公切线1.公切线是指同时相切于两条或两条以上的曲线的直线,例如和两个圆相切的直线叫做这两个圆的公切线。如果两个圆在公切线的同侧,则这公切线叫外公切线;如果两个圆在公切线的异侧,则叫内公切线。(1)若两圆相离,则有4条公切袭线。(2)若两圆外切,则有3条公切线。(3)两圆相交,则有2条公切线。(4)若两圆内切,则有1条公切线。(5)若两圆内含,则有0条公切线。2.公切线性质(1)两圆的两条外公切线长相等;(2)两条内公切线的长也相等。(3)两圆的外公切线与连心线或者交于一点或者
5、平行。知识点11:两圆公共弦定理两圆圆心的连线垂直并且评分这两个圆的公共弦。知识点12:扇形、圆柱和圆锥的相关计算1. 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。2.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。3.圆的计算公式:(1) 圆的周长C=2R=d (2)圆的面积S=R2(3)扇形弧长L=nR/180(4)扇形面积S=nR2/180=LR/2(5)圆柱表面积S表=S侧 +2S底=2Rh+2R2(6)圆柱体的体积V=S底h=R2h(7)圆锥表面积S表=S侧 +S底=Rr+r2(8)圆锥体的体积V=r2h/31.知识思维导图2.圆中常用辅助线的添法在平面几何中,解决与
6、圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。(2)见直径作圆周角在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。(3)见切线作半径命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。(4)两圆相切作
7、公切线对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。(5)两圆相交作公共弦对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。3.圆中常用辅助线的添法顺口溜(圆问题的解题技巧)半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平
8、分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。4.拓展知识:圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。重要结论:PAPB=PCPD(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。重要结论:CE2=AEBE(3)切割线定理:从
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考课件初中数学总复习资料专题24圆(原卷版)
限制150内