解析函数的泰勒展开及洛朗展开优秀课件.ppt
《解析函数的泰勒展开及洛朗展开优秀课件.ppt》由会员分享,可在线阅读,更多相关《解析函数的泰勒展开及洛朗展开优秀课件.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解析函数的泰勒展开及洛朗展开第1页,本讲稿共24页上次课主要内容回顾上次课主要内容回顾关于关于 的幂级数,其中的幂级数,其中 为常数为常数.定理定理1 1(Abel Abel第一定理)若幂级数(第一定理)若幂级数(1 1)在)在 处收敛,处收敛,则它在圆则它在圆 内每一点处绝对收敛内每一点处绝对收敛.推论推论 若幂级数(若幂级数(1 1)在)在 处发散,则它在处发散,则它在内每一点处发散内每一点处发散.定理定理3 3 对幂级数(对幂级数(1 1),若下述极限之一成立,),若下述极限之一成立,则幂级数(则幂级数(1 1)的收敛半径为)的收敛半径为第2页,本讲稿共24页定理定理4 4 设幂级数(设
2、幂级数(1 1)的收敛半径为)的收敛半径为 ,它在圆盘,它在圆盘 内的和函数为内的和函数为 ,则,则(1 1)在在 内解析;内解析;(2 2)在在 内可逐项求导数,即内可逐项求导数,即(3 3)在在 内可逐项积分,即内可逐项积分,即推论推论 在定理在定理4 4条件下,有条件下,有 或或提问提问:幂级数在收敛圆内的性质是什么幂级数在收敛圆内的性质是什么?上次课主要内容回顾上次课主要内容回顾第3页,本讲稿共24页思考下列问题思考下列问题:(1)(1)函数满足怎样的条件才能展开为幂级数函数满足怎样的条件才能展开为幂级数?(2)(2)如果函数能够展开为幂级数如果函数能够展开为幂级数,那么它的系数应如何
3、确定那么它的系数应如何确定?(3)(3)函数的幂级数展开式是否唯一函数的幂级数展开式是否唯一?(4)(4)如何确定展开式的收敛半径如何确定展开式的收敛半径?3 3 泰勒级数泰勒级数第4页,本讲稿共24页3 3 泰勒级数泰勒级数定理定理(Taylor)设函数设函数 在圆盘在圆盘 内解析,则内解析,则证明过程证明过程:第5页,本讲稿共24页人物简介人物简介 18 18世世纪纪早期英早期英国国牛牛顿学顿学派最派最优优秀代表人物之一的秀代表人物之一的英英国数学国数学家泰勒(家泰勒(Brook TaylorBrook Taylor),于于16851685年年8 8月月1818日日在在米德尔塞克斯米德尔塞
4、克斯的埃德蒙的埃德蒙顿顿出生。出生。1709 1709年年后后移居移居伦伦敦,敦,获获法法学硕学硕士士学学位。位。17121712年年当当选为选为英英国国皇家皇家学会会员学会会员,并于两并于两年年后获后获法法学学博士博士学学位。位。同年同年(即即17141714年年)出任英出任英国国皇家皇家学会学会秘秘书书,四年,四年后后因健因健康理由康理由辞退职务辞退职务。他是有限差分理论的奠基人。他是有限差分理论的奠基人。1717 1717年,他以泰勒定理求解了年,他以泰勒定理求解了数数值方程值方程,他提出的泰勒定理他提出的泰勒定理使任意单变量函数可展为幂级数。使任意单变量函数可展为幂级数。最最后后在在1
5、7311731年年1212月月2929日日于伦于伦敦逝世。敦逝世。泰勒定理泰勒定理第6页,本讲稿共24页n n情况一情况一情况一情况一:找找找找 到区域边界最短距离到区域边界最短距离到区域边界最短距离到区域边界最短距离 .n n情况二情况二情况二情况二:找找找找 与函数离与函数离与函数离与函数离 最近的一个奇点最近的一个奇点最近的一个奇点最近的一个奇点 之间的距离之间的距离之间的距离之间的距离 .3 3 泰勒级数泰勒级数推论推论 函数函数 在在 处解析的充要条件是处解析的充要条件是 可在可在 的某的某邻域内展开成幂级数邻域内展开成幂级数.Note.实际上该推论是从级数的角度深刻地反映出解析函数
6、的本质实际上该推论是从级数的角度深刻地反映出解析函数的本质.we can use we can use Taylors theorem and property of the power series to obtain this corollary.提问提问提问提问:当已知函数在某个区域内解析若要将函数当已知函数在某个区域内解析若要将函数当已知函数在某个区域内解析若要将函数当已知函数在某个区域内解析若要将函数展开成展开成展开成展开成 幂级数幂级数幂级数幂级数,则如何确定收敛半径则如何确定收敛半径则如何确定收敛半径则如何确定收敛半径R R值值值值?第7页,本讲稿共24页Note.We can
7、use Taylors theorem and corollary to obtain this result.3 3 泰勒级数泰勒级数基本结论基本结论:函数在某一点的泰勒展开式是唯一的函数在某一点的泰勒展开式是唯一的.Example1.Example1.2)2)泰勒公式法泰勒公式法1)1)代换运算代换运算第8页,本讲稿共24页几个例题几个例题Example2.Example2.第9页,本讲稿共24页几个例题几个例题Example3.Example3.Note.我们考虑的对象是单值函数所以应取幂函数的主值分支我们考虑的对象是单值函数所以应取幂函数的主值分支.第10页,本讲稿共24页Exampl
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析 函数 泰勒 展开 优秀 课件
限制150内