人教版高一数学必修一知识点总结5篇.docx
《人教版高一数学必修一知识点总结5篇.docx》由会员分享,可在线阅读,更多相关《人教版高一数学必修一知识点总结5篇.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版高一数学必修一知识点总结5篇 数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在化学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。下面就是给大家带来的人教版高一数学必修一知识点,希望能帮助到大家! 人教版高一数学必修一知识点1 一.知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 集合中的元素具有确定性(a?A和a?A,二者必居其一)、互
2、异性(若a?A,b?A,则ab)和无序性(a,b与b,a表示同一个集合)。 集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N _ .子集、交集、并集、补集、空集、全集等概念。 1)子集:若对xA都有xB,则AB(或AB); 2)真子集:AB且存在x0B但x0A;记为AB(或,且) 3)交集:AB=x|xA且xB 4)并集:AB=x|xA或xB 5)补集:CUA=x|xA但xU 注意:?A,若A?,则?A; 若,则; 若且,则A=B(
3、等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。 4.有关子集的几个等价关系 AB=AAB;AB=BAB;ABCuACuB; ACuB=空集CuAB;CuAB=IAB。 5.交、并集运算的性质 AA=A,A?=?,AB=BA;AA=A,A?=A,AB=BA; Cu(AB)=CuACuB,Cu(AB)=CuACuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 人教版高一数学必修一知识点2 一、集合 一、集合有关概念 1.集合的含义 2.集合
4、的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 u注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_N+整数集Z有理数集Q实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR|x-32,x|x-32 3
5、)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
6、如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 二、函数 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题一题多解 指数函数y=ax aa_b=aa+b(a0,a、b属于Q) (aa)b=aab(a0,a、b属于Q) (ab)a=aa_a(a0,a、b属于Q) 指数函数对称规律: 1、函数y=ax与y=a-x关于y轴对称 2、函数y=ax与y=-
7、ax关于x轴对称 3、函数y=ax与y=-a-x关于坐标原点对称 对数函数y=logax 如果,且,那么: 1+; 2-; 3. 注意:换底公式 (,且;,且;). 幂函数y=xa(a属于R) 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴
8、. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. (1)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. (2)=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. (3)0,方程无实根,二
9、次函数的图象与轴无交点,二次函数无零点. 三、平面向量 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 相等向量:长度相等且方向相同的向量 向量的运算 加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。 对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|a|+|b|。 向量的加法满足所
10、有的加法运算定律。 减法运算 与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。 (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。 数乘运算 实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,|a|=|a|,当0时,a的方向和a的方向相同,当0时,a的方向和a的方向相反,当=0时,a=0。 设、是实数,那么:(1)()a=(a)(2)()a=aa(3)(ab)=ab(4)(-)a=-(a)=(-a)。 向量的加法运算、减法运算、数乘运算统称线性运算。 向量的数量积 已知两个非零向量a、b,那么|a|b|cos叫做a与b的数量
11、积或内积,记作a?b,是a与b的夹角,|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。 两个向量的数量积等于它们对应坐标的乘积的和。 四、三角函数 1、善于用“1“巧解题 2、三角问题的非三角化解题策略 3、三角函数有界性求最值解题方法 4、三角函数向量综合题例析 5、三角函数中的数学思想方法 人教版高一数学必修一知识点3 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAP
12、PY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:XKb1.Com 非负整数集(即自然数集)记作:N 正整数集:N_N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合xR|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集
13、合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任
14、何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或xB). 人教版高一数学必修一知识点4 集合有关概念 集合的含义 集合的中元素的三个特性: 元素的确定性如:世界上的山 元素的互异性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高一 数学 必修 知识点 总结
限制150内