《2022高三数学复习知识点总结归纳5篇分享.docx》由会员分享,可在线阅读,更多相关《2022高三数学复习知识点总结归纳5篇分享.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高三数学复习知识点总结归纳5篇分享 相信有很多同学到了高中会认为数学是理科,所以没必要死记硬背。其实这是错误的想法,高中数学知识点众多,光靠一个脑袋是记不全的,好记性不如烂笔头,要想学好数学,同学们 还是要多做知识点的总结。下面就是给大家带来的高三数学复习知识点,希望对大家有所帮助! 高三数学复习知识点1 不等式分类: 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“”“”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“”(大于等于符号)“”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。 通常不等式中的数是实数,字母
2、也代表实数,不等式的一般形式为F(x,y,z)G(x,y,z)(其中不等号也可以为,中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 高三数学复习知识点2 1.定义: 用符号,=,号连接的式子叫不等式。 2.性质: 不等式的两边都加上或减去同一个整式,不等号方向不变。 不等式的两边都乘以或者除以一个正数,不等号方向不变。 不等式的两边都乘以或除以同一个负数,不等号方向相反。 3.分类: 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。 一元一次不等式组: a.关于同一个未知数的几个一元一次不等
3、式合在一起,就组成了一元一次不等式组。 b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 4.考点: 解一元一次不等式(组) 根据具体问题中的数量关系列不等式(组)并解决简单实际问题 用数轴表示一元一次不等式(组)的解集 高三数学复习知识点3 函数 高考主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分 布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。 平面向量和三角函数 高考数
4、学重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。 数列 数列这个板块,在高考中重点考两个方面:一个通项;一个是求和。 空间向量和立体几何 在高考数学考试里面重点考察两个方面:一个是证明;一个是计算。 高三数学复习知识点4 (一)导数第一定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量x(x0+x也在该邻域内)时,相应地函数取得增量y=f(x0+x)-f(x0);如果y与x之比当x0时极限存在,则称函数y=f(x)在点x0
5、处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义 (二)导数第二定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化x(x-x0也在该邻域内)时,相应地函数变化y=f(x)-f(x0);如果y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义 (三)导函数与导数 如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函
6、数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数研究多项式函数单调性的一般步骤 (1)求f(x) (2)确定f(x)在(a,b)内符号(3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f(x) (2)f(x)0的解集与定义域的交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间 高三数学复习知识点5 三角函数。注意归一公式、诱导公式的正确性 数列题。
7、1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由得证;3.证明不等式时,有时构造函数,利用函数单调性很简单 立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。 概率问题。1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+.+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样; 2022高三数学复习知识点总结归纳5篇分享
限制150内