《2022最新高一数学知识点5篇总结.docx》由会员分享,可在线阅读,更多相关《2022最新高一数学知识点5篇总结.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新高一数学知识点5篇总结 高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。下面就是给大家带来的高一数学知识点,希望能帮助到大家! 高一数学知识点总结1 (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于
2、0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与
3、f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 高一数学知识点总结2 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所
4、受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x0,则a可以是任意实数; 排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为
5、奇数,则函数的定义域为不等于0的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)显然幂
6、函数无界。 高一数学知识点总结3 定义: x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。 范围: 倾斜角的取值范围是0180。 理解: (1)注意“两个方向”:直线向上的方向、x轴的正方向; (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。 意义: 直线的倾斜角,体现了直线对x轴正向的倾斜程度; 在平面直角坐标系中,每一条直线都有一个确定的倾斜角; 倾斜角相同,未必表示同一条直线。 公式: k=tan k0时(0,90) k0时(90,180) k=0时=0 当=90时k不存在 ax+by+c=0(a0)倾斜角为A, 则ta
7、nA=-a/b, A=arctan(-a/b) 当a0时, 倾斜角为90度,即与X轴垂直 高一数学知识点总结4 反比例函数 形如y=k/x(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当K0时,反比例函数图像经过一,三象限,是减函数 当K0时
8、,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高一数学知识点总结5 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.在应用条件时,易A忽略是空集的情况 3.你会用补集的思想解决有关问题吗? 4.简单命题与复合命题有
9、什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? 5.你知道“否命题”与“命题的否定形式”的区别. 6.求解与函数有关的问题易忽略定义域优先的原则. 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称. 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域. 9.原函数在区间-a,a上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:. 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法 11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等
10、式表示. 12.求函数的值域必须先求函数的定义域。 13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种基本应用你掌握了吗? 14.解对数函数问题时,你注意到真数与底数的限制条件了吗? (真数大于零,底数大于零且不等于1)字母底数还需讨论 15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值? 16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。 17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数
11、可能为的零的情形? 18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”. 19.绝对值不等式的解法及其几何意义是什么? 20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么? 21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是”. 22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示. 23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即ab0,a0. 24.解决一些等比数列的前项和问题,你注意到要对公
12、比及两种情况进行讨论了吗? 25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。 26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在? 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。) 28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。 29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与
13、第一象限的角;终边相同的角和相等的角的区别吗? 30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗? 31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗? 32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次) 33.反正弦、反余弦、反正切函数的取值范围分别是 34.你还记得某些特殊角的三角函数值吗? 35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗? 36.函数的图象的平移,方程的平移以及点的平移公式易混: (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即. (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即. (3)点的平移公式:点按向量平移到点,则. 37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围) 38.形如的周期都是,但的周期为。 39.正弦定理时易忘比值还等于2R.
限制150内