2022年秋《经济数学基础上》4.docx
《2022年秋《经济数学基础上》4.docx》由会员分享,可在线阅读,更多相关《2022年秋《经济数学基础上》4.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 厦门高校网络训练2022-2022 学年第一学期经济数学基础上复习题x1 Dx1且一、单项挑选题(每道题3 分,共 18 分)1函数ylnx1的定义域是 xAx1;Bx0;Cx0;x0;nn 3 ;2以下数列xn中收敛的是 Axn1 nnn1;B1 n11;Cxnsin n 2;Dn3当x0,以下变量中是无穷小量的为 Ax e ;Bsin11x;Cln2x ; D1cosx;4设函数fx|sinx|,就fx在x0处 A不连续; B连续,但不行导;C可导,但不连续; D可导,且导数也连续;5如函数f1x,就fx= xA1; B-1; C1; D
2、- x 1 ;x2x2x6设由方程sinyx ey0确定的隐函数为yy x ,就y x = Acosyeyx ey;Bcosy ex ey;Csiny ey x e;Dsinyy ey x eyy二、填空题(每道题3 分,共 18 分)1已知f3 log 92 x6x5,就f1 ;2lim x2x224x3;x13设f x 在x0处可导,且f00,就lim x 0f x ;x4x 2 tanxcosx;1 / 4 名师归纳总结 - - - - - - -第 1 页,共 4 页精选学习资料 - - - - - - - - - 5为使fx1ln1xex在x0处连续,就需补充定义f ;x6函数 f
3、x x 3 x 在 0,3 上满意罗尔定理的 _;三、运算题(每道题 8 分,共 48 分)1求极限 lim t 0 t 1 1t 1t;2求极限 lim x 1 tanx 2 xx 12;3求极限 lim x 0 1x e x 11;4设 sin x y e xy 4 x 求 y ;25已知 y ln cos x,求 y ;43 26求函数 y x 3 x 9 x 5 的极值;四、证明题(每道题 8 分,共 16 分)1证明当 x 0 时,证明 ln1 x x ;x 12证明方程 4 x 2 在 0 , 内至少有一个实根;(考虑零点定理)2一、单项挑选题(每道题 3 分,共 18 分)1D
4、;要求函数的定义域,即要找使函数 y x 有意义的 x 的取值范畴,那么ln x 1ln x 1 0 且 x 1 0,解得 x 0 且 x 1,应选 D;2 B ;A 当 n 时,x n 1 n,在 1 , 1 之间摇摆,故数列 x n 1 n n 1发n散, C取子列 n k 12 k ,n 2k 4 k 1,就子列 nx k1 收敛于 0,子列 nx k2 收敛于 1,由数列 x n 的两个子列收敛于不同的极限,就数列 x n 必定发散知 xn sin n 发散,2nD当 n 时,nx,那么 x n 3 发散;应选 B;3D;由无穷小量的定义有:在收敛数列中,当 x 0 时,f 0,留意:
5、无穷小量是一个变量;A 当 x 0 时,e x 1,所以 e 不是无穷小量;xB 当 x 0 时,2 / 4 名师归纳总结 - - - - - - -第 2 页,共 4 页精选学习资料 - - - - - - - - - sin11xsin10, 所 以sin11x不 是 无 穷 小 量 ; C 当x0时 ,l n 2 x l n 2,所以 ln 2 x 不是无穷小量;D当 x 0 时, 1 cos x 0,所以 1 cos x 是无穷小量,选 D;4B;lim x 0 f x lim |sin x 0 x | 0 f 0,由连续函数的定义知 f x 在 x 0 处连续,又 f x f 0 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经济数学基础上 2022 年秋 经济 数学 基础上
限制150内