《小学奥数六年级教案学案》第22讲-综合行程问题(教).doc
《《小学奥数六年级教案学案》第22讲-综合行程问题(教).doc》由会员分享,可在线阅读,更多相关《《小学奥数六年级教案学案》第22讲-综合行程问题(教).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3学员姓名:辅导科目:奥数学科教师授课主题第22讲 行程问题授课类型T同步课堂P实战演练S归纳总结教学目标环形路线上的相遇和追及问题;速度行程问题与比例关系;钟面上的行程问题。授课日期及时段T(Textbook-Based)同步课堂知识梳理 问题回顾例1、一条船顺水航行48千米,再逆水航行16千米,共用了5小时;这知船顺水航行32千米,再逆水航行24千米,也用5小时。求这条船在静水中的速度。【解析】这道题的数量关系比较隐蔽,我们条件摘录整理如下:顺水逆水时间48千米16千米5小时32千米24千米比较条件可知,船顺水航行48千米,改为32千
2、米,即少行了48-32=16(千米),那么逆水行程就由16千米增加到24千米,这就是在相同的时间里,船顺水行程是逆水行程的16÷8=2倍。所以“逆水航行16千米”,可转换为“顺水航行16×2=32(千米),这样船5小时一共顺水航行48+32=80(千米),船顺水速为80÷5=16千米,船逆水速为16÷2=8(千米)。船静水速为(16+8)÷2=12(千米)。例2、甲、乙二人分别从、两地同时出发,往返跑步。甲每秒跑3米,乙每秒跑7米。如果他们的第四次相遇点与第五次相遇点的距离是150米,求、两点间的距离为多少米? 【解析】(法一)画图分析知甲、乙
3、速度比为:,第四次相遇甲乙共走:4×217(个全程),甲走了:3×721(份)在点,第五次相遇甲乙共走:5×219(个全程),甲走了:3×927(份)在点,已知是150米,所以的长度是150÷6×(3+7)250(米)。(法二)也有不画图又比较快的方法:第四次相遇:(2×41)×3÷20余数为1 则在的位置,第五次相遇:(2×51)×3÷20余数为7 则在的位置,表示速度基数, ,(米),即全程为250米。典例分析 考点一:环型跑道行程问题例1、如下图所
4、示,某单位沿着围墙外面的小路形成一个边长300米的正方形。甲、乙两人分别从两个对角处沿逆时针方向同时出发。如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?【解析】当甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有米长。当甲、乙之间的距离等于300米时,即甲追上乙一条边(米)需(分),此时甲走了(条)边,所以甲、乙不在同一条边上,甲看不到乙。但是甲只要再走条边就可以看到乙了,即甲从出发走条边后可看到乙,共需(分),即分秒。例2、甲乙两名选手在一条河中进行划船比赛,赛道是河中央的长方形,其中米,米,已知水流从左到右,速度为每秒1米,甲乙两名选手从处同时出发,甲沿顺时针
5、方向划行,乙沿逆时针方向划行,已知甲比乙的静水速度每秒快1米,(、边上视为静水),两人第一次相遇在边上的点,那么在比赛开始的5分钟内,两人一共相遇几次?(5次)【解析】设乙的速度为米/秒,则可列得方程:解得:。所以甲的速度为米/秒。甲游一圈需要秒,乙游一圈需要秒。5分钟内,甲游了3圈还多20秒,乙游了2圈还多秒。多余的时间不够合游一圈,所以两人合游了5圈。所以两人共相遇了5次。例3、如图,在长为490米的环形跑道上,、两点之间的跑道长50米,甲、乙两人同时从、两点出发反向奔跑两人相遇后,乙立刻转身与甲同向奔跑,同时甲把速度提高了25,乙把速度提高了20结果当甲跑到点时,乙恰好跑到了点如果以后甲
6、、乙的速度和方向都不变,那么当甲追上乙时,从一开始算起,甲一共跑了多少米。【解析】相遇后乙的速度提高20,跑回点,即来回路程相同,乙速度变化前后的比为,所以所花时间的比为。设甲在相遇时跑了6单位时间,则相遇后到跑回点用了5单位时间。设甲原来每单位时间的速度,由题意得: 解得:。从点到相遇点路程为,所以。两人速度变化后,甲的速度为,乙的速度为,从相遇点开始,甲追上乙时,甲比乙多行一圈, 甲一共跑了490÷(5040)×502402690(米)。注:对于环形跑道问题,抓住相遇(或追及的)的路程和(或路程差)恰好都是一圈。(这是指同地出发的情况,不同地,则注意两地距离在其中的影响
7、)。另外,本题涉及量化思想,即将比中的每一份看作一个单位,进一步来说,一个时间单位乘以一个速度单位,得到一个路程单位。考点二:钟面行程问题例1、某小组在下午6点多开了一个会,刚开会时小张看了一下手表,发现那时手表的分针和时针垂直。下午7点之前会就结束了,散会时小张又看了一下手表,发现分针与时针仍然垂直,那么这个小组会共开了 分钟。【解析】分针每分钟转圈,时针每分钟转圈。分针要比时针多转圈,需要(分)。例2、某工厂的一只走时不够准确的计时钟需要69分钟(标准时间)时针与分针才能重合一次。工人每天的正常工作时间是8小时,在此期间内,每工作一小时付给工资4元,而若超出规定时间加班,则每小时付给工资6
8、元。如果一个工人照此钟工作小时,那么他实际上应得工资多少元?【解析】时钟的一圈有60小格,分针每分钟走1格,时针每分钟走格。时针和分针从一次重合到下一次重合,分针应比时针多走一圈,因此需要时间(分钟)。于是依题设可知,计时钟的分钟相当于标准时间的69分钟。从而用此钟计时的8小时,实际上应该是(小时),那么工人实际上应得的工资为元。例3、一个挂钟每天慢30秒。一个人在3月23日12时校正了挂钟,到4月2日14时至15时之间,挂钟的时针与分针重合在一起时,标准时间应该是4月2日_时_分_秒(精确到秒)。【解析】从3月23日12时到4月2日12时共10天,挂钟慢了30×10÷60
9、=5(分)此时挂钟显示11时55分。因为时针与分针两次重合时间为(分);所以从标准时间4月2日12时到所求时刻,挂钟走的时间为(分);相当于标准时间(分)2时15分57秒所求时刻为14时15分57秒。P(Practice-Oriented)实战演练实战演练 Ø 课堂狙击1、王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?【解析】设从教室去图书馆闭馆时所用时间是x分钟(米)。2、甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。两人的上山速度都是米/分,下山的速度都是米/分。甲到达山脚立即
10、返回,乙到达山顶休息分钟后返回,两人在距山顶米处再次相遇。山道长 米。【解析】甲、乙两人相遇后如果甲继续行走(分钟)后可以返回山顶,如果乙不休息,那么这个时候乙应该到达山脚,所以这个时候乙还需要分钟到达山脚,也就是距离山脚还有(米),所以山顶到山脚的距离为(米)。3、小明在1点多钟时开始做奥数题,当他做完题时,发现还没到2:30,但此时的时针和分针与开始做题时正好交换了位置,你知道小明做题用了多长时间,做完题时是几点吗?【解析】在不到1.5小时的时间内,时针与分针正好交换了一下位置,说明两针在此时间内共转了一圈,则经分钟。两针在此时间内共转了一圈,所以时针实际转了圈,所以开始做作业时分针在时针
11、前圈,做完作业时时针在分针前圈,2点的时候,时针在分针前圈,所以还要经过小时,即分,小明所以做完作业时是2点分。4、有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒厘米的速度在短跑道上跑动。如果甲、乙两个机器人同时从点出发,那么当两个机器人在跑道上第迎面相遇时,机器人甲距离出发点点多少厘米?【解析】第一次在点相遇,甲、乙共跑了400厘米(见左下图)。 第二次在点相遇(要排除甲还没有第二次上长跑道时可能发生的相遇事件),甲、乙共跑了700
12、厘米(见右上图)。同理,第三次相遇,甲、乙又共跑了700厘米。共用时间(400+700+700)÷(6+4)=180(秒),甲跑了6×180=1080(厘米),距点400×31080=120(厘米)。5、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟有一个人从乙站出发沿电车线路骑车前往甲站他出发的时候,恰好有一辆电车到达乙站在路上他又遇到了10辆迎面开来的电车到达甲站时,恰好又有一辆电车从甲站开出问他从乙站到甲站用了多少分钟?【解析】先让学生用分析间隔的方式来解答:骑车人一共看到12辆车,他出发时看到的是15
13、分钟前发的车,此时第4辆车正从甲发出骑车中,甲站发出第4到第12辆车,共9辆,有8个5分钟的间隔,时间是(分钟)再引导学生用柳卡的运行图的方式来分析:第一步:在平面上画两条平行线分别表示甲站与乙站由于每隔5分钟有一辆电车从甲站出发,所以把表示甲站与乙站的直线等距离划分,每一小段表示5分钟第二步:因为电车走完全程要15分钟,所以连接图中的1号点与P点(注意:这两点在水平方向上正好有3个间隔,这表示从甲站到乙站的电车走完全程要15分钟),然后再分别过等分点作一簇与它平行的平行线表示从甲站开往乙站的电车第三步:从图中可以看出,要想使乙站出发的骑车人在途中遇到十辆迎面开来的电车,那么从P点引出的粗线必
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学奥数六年级教案学案 小学 六年级 教案 22 综合 行程 问题
限制150内