沪教版20xx初三数学教案.docx
《沪教版20xx初三数学教案.docx》由会员分享,可在线阅读,更多相关《沪教版20xx初三数学教案.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪教版20xx初三数学教案 课堂教学是一门艺术,初中数学教学大纲指出:使学生获得必要的数学知识,对于提高全体学生素质,为社会培育各类人才奠定基础是十分重要的。今天在这给大家整理了一些沪教版20xx初三数学教案,我们一起来看看吧! 沪教版20xx初三数学教案1 图形的旋转 1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题. 2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题. 3.旋转的基本性质. 重点 旋转及对应点的有关概念及其应用. 难点 旋转的基本性质. 一、复习引入 (学生活动)请同学们完成下
2、面各题. 1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形. 2.如图,已知ABC和直线l,请你画出ABC关于l的对称图形ABC. 3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质. (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质. (3)什么叫轴对称图形? 二、探索新知 我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来讨论. 1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒
3、针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了_度,分针转了_度,秒针转了_度. 2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略) 3.第1,2两题有什么共同特点呢? 共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度. 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角. 如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点. 下面我们来运用这些概念来解决一些问题. 例1如图,如果把钟表的指针
4、看做三角形OAB,它绕O点按顺时针方向旋转得到OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A,B分别移动到什么位置? 解:(1)旋转中心是O,AOE,BOF等都是旋转角. (2)经过旋转,点A和点B分别移动到点E和点F的位置. 自主探究: 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板. (分组讨论)根据图回答下面问题(一组推荐一人上台说明) 1.线段OA与OA,OB
5、与OB,OC与OC有什么关系? 2.AOA,BOB,COC有什么关系? 3.ABC与ABC的形状和大小有什么关系? 老师点评:1.OA=OA,OB=OB,OC=OC,也就是对应点到旋转中心的距离相等. 2.AOA=BOB=COC,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角. 3.ABC和ABC形状相同和大小相等,即全等. 综合以上的实验操作得出: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等. 例2如图,ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形. 分析:绕C
6、点旋转,A点的对应点是D点,那么旋转角就是ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCB=ACD,又由对应点到旋转中心的距离相等,即CB=CB,就可确定B的位置,如图所示. 解:(1)连接CD; (2)以CB为一边作BCE,使得BCE=ACD; (3)在射线CE上截取CB=CB,则B即为所求的B的对应点; (4)连接DB,则DBC就是ABC绕C点旋转后的图形. 三、课堂小结 (学生总结,老师点评) 本节课应掌握: 1.对应点到旋转中心的距离相等; 2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用. 四、作业布置 教材第6263页习题4,5,
7、6. 沪教版20xx初三数学教案2 配方法的基本形式 理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤. 重点 讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤. 难点 将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 一、复习引入 (学生活动)请同学们解下列方程: (1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7 老师点评:上面的方程都能
8、化成x2=p或(mx+n)2=p(p0)的形式,那么可得 x=p或mx+n=p(p0). 如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗? 二、探索新知 列出下面问题的方程并回答: (1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢? (2)能否直接用上面前三个方程的解法呢? 问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少? (1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征. (2)不能. 既然不能直接降次解方程,那么,我们就应该设法把
9、它转化为可直接降次解方程的方程,下面,我们就来讲如何转化: x2+6x-16=0移项x2+6x=16 两边加(6/2)2使左边配成x2+2bx+b2的形式x2+6x+32=16+9 左边写成平方形式(x+3)2=25降次x+3=5即x+3=5或x+3=-5 解一次方程x1=2,x2=-8 可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1用配方法解下列关于x的方程: (1)x2-8x+1=0
10、(2)x2-2x-12=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略. 三、巩固练习 教材第9页练习1,2.(1)(2). 四、课堂小结 本节课应掌握: 左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程. 五、作业布置 沪教版20xx初三数学教案3 一、教学目标 1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。 2.经历利用三角函数知识解决实际 问题的过程,促进观察、分析、归纳、沟通等能力的进展。 3.感受数学与生活的密切联系,丰富数学
11、学习的成功体验,激发学生继续学习 的好奇 心,培育学生与他人合作沟通的意识。 二、教材分析 在生活中,我们会常常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30, 45,60角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提 出问题、分析问题、探究解决方法直至最终解决问题的过程。 三、学校及学生状况分析 九班级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维
12、为主要进展趋势,但在很大程度上,学生仍然要依靠具体的阅历材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。 学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30,45,60角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。 四、教学设计 (一)复习提问 1.梯子靠在墙 上,如果梯子与地面的夹角为60,梯子的长度为3米,那么梯子底端到墙的距离有几米? 学生活动:根据题意,求出数值。 2.在生活中,梯子与地面的夹角总
13、是60吗? 不是,可以出现各种角度,60只是一种特殊现象。 图1(二)创设情境引入课题 1如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。已知缆车的路线与平面的夹角为A=16 ,那么缆车垂直上升的距离是多少? 哪条线段代表缆车上升的垂直距离? 线段BC。 利用哪个直角三角形可以求出BC? 在RtABC中,BC=ABsin 16,所以BC=200sin 16。 你知道sin 16是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。 那么,怎样用科学计算器求三角函数呢? 用科学计算器求三角函数值,要用sin cos和tan键。老师活动:(1)展示下表;(2)按表口述,让学生学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 沪教版 20 xx 初三 数学教案
限制150内