数学建模最优化方法建模及实现课件.ppt
《数学建模最优化方法建模及实现课件.ppt》由会员分享,可在线阅读,更多相关《数学建模最优化方法建模及实现课件.ppt(63页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学建模最数学建模最优化方法建模及化方法建模及实现第1页,此课件共63页哦实验目的目的实验内容内容3、基于最、基于最优化方法建模及化方法建模及实现、论文写作。文写作。1、了解最、了解最优化化问题的基本内容。的基本内容。2、用数学、用数学软件包件包matlab求解求解(非非)线性性规划划问题。4、实验题目:目:钢管的管的订购与运与运输。1、基、基础知知识、例子。、例子。3、建模案例:投、建模案例:投资的收益与的收益与风险2、掌握、掌握线性性规划及非划及非线性性规划建模及其划建模及其MATLAB实现。第2页,此课件共63页哦最优化问题最优化问题v优化问题,一般是指用“最好”的方式,使用或分配有限的
2、资源,即劳动力、原材料、机器、资金等,使得费用最小或利润最大.v建立优化问题的数学模型 1)确定问题的决策变量 2)构造模型的目标函数和允许取值的范围,常用一组不等式来表示.第3页,此课件共63页哦(1)(2)由(1)、(2)组成的模型属于约束优化,若只有(1)式就是无约束优化,f(x)称为目标函数,gi(x)称为约束条件若目标函数f(x)和约束条件g(x)都是线性函数,则称该模型是线性规划.第4页,此课件共63页哦 线性规划模型线性规划模型例1、生产炊事用具需要两种资源劳动力和原材料,某公司制定生产计划,生产三种不同的产品,生产管理部门提供的数据如下 A B C劳动力(小时/件)736原材料
3、(千克/件)445利润(元/件)423第5页,此课件共63页哦每天供应原材料200kg,每天可使用的劳动力为150h.建立线性规划模型,使总收益最大,并求各种产品的日产量.解解 第一步,确定决策变量.用 分别表示A,B,C三种产品的日产量 第二步,约束条件 原材料:劳动力:第三步,确定目标函数 第6页,此课件共63页哦例2 一家广告公司想在电视、广播上做广告,其目的是尽可能多的招来顾客,下面是调查结果:电视无线电 广播杂志白天最佳时间一次广告费用(千元)40753015受每次广告影响的顾客数(千人)400900500200受每次广告影响的女顾客数(千人)300400200100第7页,此课件共
4、63页哦这家公司希望广告费用不超过800(千元)还要求:1)至少要有200万妇女收看广告;2)电视广告费用不超过500(千元)3)电视广告白天至少播出3次,最佳时间至少播出2次;4)通过广播、杂志做的广告要重复5到10次.令 分别白天,最佳电视、广播、杂志广告次数 第8页,此课件共63页哦例例3:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?第9页,此课
5、件共63页哦解解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型:解答第10页,此课件共63页哦例例4:某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?解解 设需要一级和二级检验员的人数分别为x1、x2人,则应付检验员的工资为:因检验员
6、错检而造成的损失为:第11页,此课件共63页哦故目故目标函数函数为:约束条件为:第12页,此课件共63页哦线性性规划模型:划模型:解答返 回第13页,此课件共63页哦线性规划模型的一般形式线性规划模型的一般形式 目目标函数和所有的函数和所有的约束条件都是决策束条件都是决策变量量的的线性函数。性函数。第14页,此课件共63页哦实际问题中中的的优化模型化模型x决策变量决策变量f(x)目标函数目标函数gi(x)0约束条件约束条件数学规划数学规划线性规划线性规划(LP)二次规划二次规划(QP)非线性规划非线性规划(NLP)纯整数规划纯整数规划(PIP)混合整数规划混合整数规划(MIP)整数规划整数规划
7、(IP)0-1整数规划整数规划一般整数规划一般整数规划连续规划连续规划 优化模型的分类优化模型的分类第15页,此课件共63页哦线性规划问题的求解在理论上有单纯形法,在实际建模中常用以下解法:1.图解法 2.LINGO 软件包;3.Excel中的规划求解;4.MATLAB软件包.第16页,此课件共63页哦min z=cX 1、模型:命令:x=linprog(c,A,b)2、模型:min z=cX 命令:x=linprog(c,A,b,Aeq,beq)或或 x=linprog(c,A,b,Aeq,beq,x0)或或 x,fval=linprog(c,A,b,Aeq,beq)注意注意:若没有不等式:
8、存在,则令A=,b=.用用MATLAB优化工具箱解线性优化工具箱解线性linear规划规划第17页,此课件共63页哦3、模型:min z=cX VLBXVUB 命令:1 x=linprog(c,A,b,Aeq,beq,VLB,VUB)2 x=linprog(c,A,b,Aeq,beq,VLB,VUB,X0)注意:1 若没有等式约束:,则令Aeq=,beq=.2其中X0表示初始点 4、命令:x,fval=linprog()返回最返回最优解解及及处的目的目标函数函数值fval.第18页,此课件共63页哦解解:编写写M文件文件xxgh1.m如下:如下:c=6 3 4;A=1,2,-3;0 1 0;b
9、=80;50;Aeq=1 1 1;beq=120;vlb=30,0,20;vub=;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh1)例例5第19页,此课件共63页哦解解 编写写M文件文件xxgh2.m如下:如下:c=-0.4-0.28-0.32-0.72-0.64-0.6;A=0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08;b=850;700;100;900;Aeq=;beq=;vlb=0;0;0;0;0;0;vub=
10、;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh2)例例6第20页,此课件共63页哦S.t.改写为:问题例例3的解答第21页,此课件共63页哦编写写M文件文件xxgh3.m如下如下:f=13 9 10 11 12 8;A=0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3;b=800;900;Aeq=1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1;beq=400 600 500;vlb=zeros(6,1);vub=;x,fval=linprog(f,A,b,Aeq,beq,vlb,vub)To M
11、atlab(xxgh3)第22页,此课件共63页哦x=0.0000 600.0000 0.0000 400.0000 0.0000 500.0000fval=1.3800e+004计算结果:计算结果:即在甲机床上加工600个工件2,在乙机床上加工400个工件1、500个工件3,可在满足条件的情况下使总加工费最小为13800。第23页,此课件共63页哦 问题改写为:例例4的解答第24页,此课件共63页哦编写写M文件文件xxgh4.m如下:如下:c=40;36;A=-5-3;b=-45;Aeq=;beq=;vlb=zeros(2,1);vub=9;15;%调用linprog函数:x,fval=li
12、nprog(c,A,b,Aeq,beq,vlb,vub)To Matlab(xxgh4)第25页,此课件共63页哦结果果为:x=9.0000 0.0000 fval=360即只需聘用9个一级检验员。注:注:本问题应还有一个约束条件:x1、x2取整数。故它是一个整数整数线性性规划划问题。这里把它当成一个线性规划来解,求得其最优解刚好是整数:x1=9,x2=0,故它就是该整数规划的最优解。若用线性规划解法求得的最优解不是整数,将其取整后不一定是相应整数规划的最优解,这样的整数规划应用专门的方法求解。返 回第26页,此课件共63页哦第27页,此课件共63页哦 1)首先建立M文件fun.m,定义目标函
13、数F(X):function f=fun(X);f=F(X);其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:二、非线性规划问题及其二、非线性规划问题及其Matlab第28页,此课件共63页哦 3)建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(fun,X0,A,b)(2)x=fmincon(fun,X0,A,b,Aeq,beq)(3)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(fun
14、,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options)(6)x,fval=fmincon(.)(7)x,fval,exitflag=fmincon(.)(8)x,fval,exitflag,output=fmincon(.)输出极值点M文件迭代的初值参数说明变量上下限第29页,此课件共63页哦注意:注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 优化 方法 实现 课件
限制150内