大豆浓缩蛋白项目工程项目前期准备规划.docx
《大豆浓缩蛋白项目工程项目前期准备规划.docx》由会员分享,可在线阅读,更多相关《大豆浓缩蛋白项目工程项目前期准备规划.docx(101页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大豆浓缩蛋白项目工程项目前期准备规划xx有限公司目录第一章 项目简介5一、 项目名称及项目单位5二、 项目建设地点5三、 建设规模5四、 项目建设进度5五、 建设投资估算5六、 项目主要技术经济指标6第二章 现代工程咨询方法概述8一、 现代工程咨询方法框架8二、 现代工程咨询方法的特点9第三章 现代工程咨询方法12一、 层次分析法概述及优缺点12二、 SWOT分析法的基本步骤15第四章 数据采集分析与知识管理17一、 大数据系统和数据挖掘技术17二、 信息鉴别常用方法21第五章 工程咨询信息及其管理24一、 工程咨询信息类型及来源24二、 工程咨询信息及其管理概述28第六章 资源环境承载力影响
2、因素识别及评价指标30一、 资源承载力影响因素识别及评价指标30二、 环境承载力影响因素识别及评价指标31第七章 规划咨询方法33一、 综合平衡方法33二、 模拟预测方法34第八章 现金流量分析36一、 现金流量分析指标应用36二、 基准收益率的测算和选取36第九章 流动资金估算41一、 分项详细估算法41二、 流动资金估算应注意的问题44第十章 建设期利息估算45一、 建设期利息估算的前提条件45二、 建设期利息的估算方法45第十一章 资产证券化方案分析46一、 资产证券化模式设计46二、 PPP项目资产证券化55第十二章 并购融资及债务重组62一、 并购融资方式62二、 公允价值估值方法7
3、0第十三章 财务盈利能力分析76一、 静态指标分析76二、 动态指标分析76第十四章 财务分析的价格及选取原则87一、 财务分析的价格体系87二、 财务分析的取价原则89第十五章 经济效益与费用的识别与计算92一、 经济效益与费用识别的基本要求92二、 间接效益与间接费用的识别与计算93第十六章 投入产出经济价格的确定98一、 不具备市场价格的产出效果经济价格确定98二、 投入产出经济价格的含义98第一章 项目简介一、 项目名称及项目单位项目名称:大豆浓缩蛋白项目项目单位:xx有限公司二、 项目建设地点本期项目选址位于xxx(以选址意见书为准),占地面积约24.00亩。项目拟定建设区域地理位置
4、优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,非常适宜本期项目建设。三、 建设规模该项目总占地面积16000.00(折合约24.00亩),预计场区规划总建筑面积26709.21。其中:主体工程15954.18,仓储工程6835.65,行政办公及生活服务设施2805.78,公共工程1113.60。四、 项目建设进度结合该项目建设的实际工作情况,xx有限公司将项目工程的建设周期确定为12个月,其工作内容包括:项目前期准备、工程勘察与设计、土建工程施工、设备采购、设备安装调试、试车投产等。五、 建设投资估算(一)项目总投资构成分析本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎
5、财务估算,项目总投资8497.81万元,其中:建设投资6944.60万元,占项目总投资的81.72%;建设期利息80.23万元,占项目总投资的0.94%;流动资金1472.98万元,占项目总投资的17.33%。(二)建设投资构成本期项目建设投资6944.60万元,包括工程费用、工程建设其他费用和预备费,其中:工程费用5759.88万元,工程建设其他费用1015.06万元,预备费169.66万元。六、 项目主要技术经济指标(一)财务效益分析根据谨慎财务测算,项目达产后每年营业收入17800.00万元,综合总成本费用14052.69万元,纳税总额1780.75万元,净利润2740.80万元,财务内
6、部收益率24.45%,财务净现值5529.95万元,全部投资回收期5.21年。(二)主要数据及技术指标表主要经济指标一览表序号项目单位指标备注1占地面积16000.00约24.00亩1.1总建筑面积26709.21容积率1.671.2基底面积9280.00建筑系数58.00%1.3投资强度万元/亩263.452总投资万元8497.812.1建设投资万元6944.602.1.1工程费用万元5759.882.1.2工程建设其他费用万元1015.062.1.3预备费万元169.662.2建设期利息万元80.232.3流动资金万元1472.983资金筹措万元8497.813.1自筹资金万元5223.2
7、13.2银行贷款万元3274.604营业收入万元17800.00正常运营年份5总成本费用万元14052.69""6利润总额万元3654.40""7净利润万元2740.80""8所得税万元913.60""9增值税万元774.24""10税金及附加万元92.91""11纳税总额万元1780.75""12工业增加值万元5961.32""13盈亏平衡点万元6870.05产值14回收期年5.21含建设期12个月15财务内部收益率24.45%所得税
8、后16财务净现值万元5529.95所得税后第二章 现代工程咨询方法概述一、 现代工程咨询方法框架(一)现代工程咨询方法体系现代工程咨询方法体系包括哲学方法、逻辑方法和学科方法。哲学方法一般是辩证地分析事物的两面性,包括它的优点和缺点、正面效应和反面效应;逻辑方法是用概念、判断、推理、假说等逻辑思维形式,对事物进行归纳、演绎、综合;学科方法是利用各种学科中常用的研究方法,包括文献法、观察法、访谈法、问卷法、测量法和实验法、价值工程方法、网络控制方法、市场调查研究方法、战略规划研究方法、财务评价方法、经济评价方法、风险分析方法等。(二)常用现代工程咨询方法基于咨询工程师的基本能力要求,以项目周期的
9、全过程咨询服务为主线,重点集中于投资项目前期咨询服务领域,常用的现代工程咨询方法包括综合分析、规划咨询、市场分析、项目评价、项目管理等五大类,每一大类中又包括若干具体方法。需要说明的是,虽然我们将某一具体方法归于某一大类名下,但其并不是仅限应用于此类项目咨询领域,亦可应用于其他项目咨询中。如利益相关者分析法,经常应用于规划咨询,同时也常用于社会评价;如德尔菲法,不仅应用于市场预测,同时也应用于规划咨询、社会评价等。二、 现代工程咨询方法的特点现代工程咨询方法的特点是,定性分析和定量分析相结合,重视定量分析;静态分析与动态分析相结合,重视动态分析;统计分析与预测分析相结合,重视预测分析。定性分析
10、与定量分析1定性分析定性分析是通过研究事物构成要素间的相互联系来揭示事物本质的方法,它是在逻辑分析、判断推理的基础上,对客观事物进行分析与综合,从而找出事物发展内在规律性,确定事物的本质。在工程咨询研究中,许多难以用计量表达的场合,定性分析方法可以发挥重要作用。2定量分析定量分析是依据统计数据,选择建立合适的数学模型,计算出分析对象的各项指标及其数值的一种方法。它是通过反映一定质的事物量的关系来揭示事物内在规律的方法,在数学、统计学、运筹学、计量学、计算机等学科基础之上,通过方程、数学图表和模型等方式来研究事物的本质。在工程咨询工作中采用定量分析的方法,对复杂事物进行数据处理,进行比较分析,可
11、以使问题更为清晰,解决方案更精确。静态分析与动态分析1静态分析静态分析是观测和评价事物某一时点状态的一种方法。如项目评价中通过计算静态投资回收期、总投资收益率、资本金净利润率等指标,可以对项目的财务效益得出初步的判断。2动态分析在工程咨询服务的各个阶段,特别是在项目决策评价阶段,要树立动态观念,如考虑资金时间价值、市场供求变化、技术发展变化、社会经济环境的变化等。现代项目财务评价一般以动态分析为主,主要进行项目现金流量分析,计算财务净现值、内部收益率等指标,并进行风险概率分析等。统计分析与预测分析1统计分析统计分析是对分析对象过去和现在的信息进行收集、整理、统计和分析。在现代工程决策研究咨询中
12、经常需要采取多种方法和渠道,收集大量的统计数据,包括行业、区域、市场、技术、企业等的统计资料和信息,从而分析、归纳和总结事物的发展规律,把握发展动向;在项目执行阶段,也需要对项目的执行情况进行监控,对投资、质量、进度等进行统计分析,并与计划进行比较,判断项目的进展情况,以便采取有针对性的应对措施,促进项目的顺利进行。2预测分析预测分析是依据分析对象过去和现在的信息,采用一定的方法,对事物未来发展趋势进行分析、推测、判断的方法。预测分析是现代工程咨询的重要方法,尤其是在投资前期决策阶段,预测分析是项目咨询的重要工作。投资项目决策是建立在对未来预测的基础上的,需要对未来的社会经济环境、产业政策走向
13、、技术发展趋势、市场需求变化、原材料供应、配套条件约束、资金市场等进行预测。第三章 现代工程咨询方法一、 层次分析法概述及优缺点(一)层次分析法概述层次分析法(简称AHP)是美国匹茨堡大学运筹学家T.L.satty教授于20世纪70年代初,在为美国国防部研究“应急计划”时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。该方法将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质影响因素及其内在关系等进行深人分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从
14、而为求解多准则或无结构特性的复杂决策问题提供一种简便的综合决策分析方法。层次分析法的应用范围十分广泛,应用的领域包括:经济与计划;能源政策与资源分配;政治问题及冲突;人力资源管理;教育发展;医疗卫生;环境工程;军事指挥与武器评价;企业管理与生产经营决策;项目评价;规划咨询;资源环境承载力评价等。层次分析法优缺点1层次分析法的优点(1)系统性的分析方法层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层
15、次中的每个因素对结果的影响程度都是量化的,非常清晰明确。(2)简洁实用的决策方法这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,将多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。该方法计算简便,结果明确,且易于决策者了解和掌握。(3)所需定量数据信息较少层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲究定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,该方法把判断各要素的相对重要性化为简单
16、的权重进行计算。2层次分析法的缺点(1)不能为决策者提供新方案对于大部分决策者来说,如果一种分析方法能替我们分析出在我们已知的方案里的最优者,然后能指出已知方案的不足,或者甚至能提出改进方案的话,这种分析方法才是比较完美的。而层次分析法只能从原有备选方案中选择较优者,而不能为决策者提供解决问题的新方案。(2)指标过多时工作量大,且权重难以确定当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加,而指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵,那么就需要对许多的指标进行两两比较的工作。由于一般情况下两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,对
17、每两个指标之间的重要程度的判断可能就会出现困难,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,如果不能通过,就需要进行调整,在指标数量多的时候其调整的工作量大,且权重难以确定。(3)特征值和特征向量的精确求法比较复杂在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。在二阶、三阶的时候,还比较容易处理,但随着指标的增加,阶数也随之增加,其人工计算也变得越来越困难,需要借助计算机来完成。二、 SWOT分析法的基本步骤运用SWOT分析法大体上分成三个步骤:分析环境因素;构造SWOT矩阵;制定行动计划。(一)分析环境因素运用各种调查研究方法,分析出企业或
18、组织所处的各种环境因素,即外部环境因素和内部能力因素。外部环境因素包括机会因素和威胁因素,它们是外部环境对企业或组织的发展直接有影响的有利和不利因素,属于客观因素,一般归属为经济、政治、社会、人口、产品和服务、技术、市场、竞争等不同范畴。内部环境因素包括优势因素和劣势因素,它们是企业或组织发展中自身存在的积极和消极因素,属主观因素,一般归类为管理、组织、财务、人力资源等不同范畴。在调查分析这些因素时,不仅要考虑到历史与现状,而且更要考虑未来发展问题(二)构造SWOT矩阵将调查得出的各种因素根据轻重缓急或影响程度等进行排序,构造SWOT矩阵。在此过程中,将那些对企业或组织发展有直接、重要、迫切、
19、久远的影响因素优先排列出来,而将那些间接、次要、不急、短暂的影响因素排在后面。(三)制定行动计划在完成环境因素分析和SWOT矩阵的构造后,便可以制定出相应的行动计划。制定计划的基本思路是:发挥优势因素,克服劣势因素,利用机会因素,化解威胁因素;考虑过去,立足当前,着眼未来;运用系统分析的综合分析方法,将排列与考虑的各种环境因素相互匹配起来加以组合,得出一系列企业或组织未来发展的可选择对策。第四章 数据采集分析与知识管理一、 大数据系统和数据挖掘技术(一)数据挖掘概述1大数据大数据是指超过既往数据库系统规模、传输速度和处理能力,或者既往数据库系统结构无法容纳的数据。大数据常以万亿或EB衡量,且种
20、类多、实时性强,蕴藏的商业价值大。很多现有的新或旧的信息基础设施、工具和技术可用来开发和利用大数据中蕴藏的价值。大数据有各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章、买卖记录、网络日志、病历、事监控、视频和图像档案,及大型电子商务。大数据是数据挖掘产生与生存发展的土壤。如今数据每五年翻一番,面对前所未有的海量数据,为了从中发现有用的信息必须进行数据挖掘。此外,计算机存储、处理大量数据,以及运算的能力大为增强,为数据挖掘创造了条件,使其成为一门独特的学科和技术。2数据挖掘与数据分析的区别数据挖掘与数据分析的主要区别在于:(1)处理工作量。数据分析的数据量可能并不大,而数据挖掘
21、的数据量极大。(2)制约条件。数据分析是从某些假设出发,建立方程或模型,而数据挖掘不作假设,可以自动建立方程。(3)处理对象。数据分析往往是针对数字型数据,而数据挖掘对象类型繁多,例如图像、声音、文本等。(4)处理结果。数据分析可以解释结果的含义;数据挖掘的结果不易解释,着眼于预测未来,并提出决策建议。想要从数据中发现规律(即认知),往往需将数据分析和数据挖掘结合起来。(二)数据挖掘步骤按挖掘对象,数据挖掘分为数据库与数据仓库挖掘和网络挖掘两种,各自步骤分述如下。1数据库与数据仓库挖掘数据挖掘一般有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘、模式评估和知识表示8个步骤。(1)信
22、息收集。从确定的挖掘对象中提取特征,然后选择合适的收集方法,将收集到的信息存入数据库。对于海量数据,必须选择合适的数据仓库。(2)数据集成。把来源、格式、特点、性质不同的数据按逻辑或物理属性加以编排,以便以后使用。(3)数据规约。多数数据挖掘算法耗时很长,商业数据往往较多,数据挖掘更耗时间。数据规约就是简化已有可用数据集的表示,规约后数量大减,但仍能保持原数据的完整性,对规约数据的挖掘结果,与对规约前数据的挖掘结果相同或几乎相同。(4)数据清理。有些数据不完整(属性缺少属性值)、含噪声(属性值错误),不一致(同一信息有多种表示),需要清理,使其完整、正确、一致后存入数据仓库。(5)数据变换。将
23、数据变换成适合数据挖掘的形式。实数型数据,可将其分层和离散化。(6)数据挖掘。根据数据格式、属性与特点,选择合适的处理工具,例如统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络,取得有用的信息。(7)模式评估。由行业专家核实数据挖掘结果是否合理、是否可用。(8)知识表示。将数据挖掘得到的信息以可视方式交给用户,或作为新的知识存人知识库,供其他应用程序使用。并非所有的数据挖掘都要走上述的每一步。若只有一个数据源,则可以省略数据集成。数据规约、数据清理、数据变换合称数据预处理。数据挖掘至少60%的费用要花在信息收集阶段,而至少60%以上的精力和时间要花在数据预处理上。数据挖掘是一个反复多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大豆 浓缩 蛋白 项目 工程项目 前期 准备 规划
限制150内