《初中数学知识点之基础知识点总结.pdf》由会员分享,可在线阅读,更多相关《初中数学知识点之基础知识点总结.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学知识点之根底知识点总结初中数学知识点之根底知识点总结数轴:画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个有理数都可以用数轴上的一个点来表示。如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点间隔相等。数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于 0,正数大于负数。绝对值:在数轴上,一个数所对应的点与原点的间隔叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是 0。
2、两个负数比较大小,绝对值大的反而小。有理数的运算:加法:同号相加,取相同的符号,把绝对值相加。异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。一个数与 0 相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:两数相乘,同号得正,异号得负,绝对值相乘。任何数与 0 相乘得 0。乘积为 1 的两个有理数互为倒数。除法:除以一个数等于乘以一个数的倒数。0不能作除数。乘方:求 n 个相同因数 a 的积的运算叫做乘方,乘方的结果叫幂,a 叫底数,n 叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。平方根:如果一个正数 x
3、 的平方等于 a,那么这个正数 x 就叫做 a 的算术平方根。如果一个数 x 的平方等于 a,那么这个数 x就叫做 a 的平方根。一个正数有 2 个平方根/0 的平方根为 0/负数没有平方根。求一个数 a 的平方根运算,叫做开平方,其中 a 叫做被开方数。立方根:如果一个数 x 的立方等于 a,那么这个数 x 就叫做 a的立方根。正数的立方根是正数、0 的立方根是 0、负数的立方根是负数。求一个数 a 的立方根的运算叫开立方,其中 a 叫做被开方数。实数:实数分有理数和无理数。在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。每一个实数都可以在数轴上的
4、一个点来表示。代数式:单独一个数或者一个字母也是代数式。合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。整式:数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。一个单项式中,所有字母的指数和叫做这个单项式的次数。一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:am+an=a(m+n)(am)n=amn(a/b)n=an/bn 除法一样。整式的乘法:单项式与单项式相乘,把他们的
5、系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。整式的除法:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,那么连同他的指数一起作为商的一个因式。多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:整式 a 除以整式 b,如果除式 b 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。分式的分子与分母同乘以或除以同一个不等于 0 的整式,分式的值不变。k0 那么直线的倾斜角为锐角k0 直线与 y 轴的交点在 x 轴的上方b0 直线与 y 轴的交点在 x 轴的下方
限制150内