(新高考)2021届小题必练15 解三角形-教师版.docx
《(新高考)2021届小题必练15 解三角形-教师版.docx》由会员分享,可在线阅读,更多相关《(新高考)2021届小题必练15 解三角形-教师版.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(新高考)小题必练15:解三角形1通过对任意三角形边长和角度关系的探索,掌握余弦定理2通过对任意三角形边长和角度关系的探索,掌握正弦定理3能解决一些简单的三角形度量问题1【2020全国卷】在中,则( )ABCD【答案】A【解析】由余弦定理可知:,可得,又由余弦定理可知,故选A【点睛】本题实际是余弦定理的正反应用,先通过角的余弦值结合余弦定理求边长,再用余弦定理求角的余弦值2【2020全国卷】如图,在三棱锥的平面展开图中,则 【答案】【解析】,同理,在中,【点睛】本题主要考察正弦定理和余弦定理,通过立体图形的展开,结合展开图型中变化的量和不变的量之间的关系,利用正余弦定理解决问题一、单选题1已知
2、的内角,的对边为,若,则( )ABCD【答案】B【解析】由,得,所以根据正弦定理,即,解得,故选B2已知在中,分别为角,的对边,为最小角,且,则的面积等于( )ABCD【答案】C【解析】,由余弦定理得,即,解得或,为最小角,3某船开始看见灯塔时,灯塔在船南偏东方向,后来船沿南偏东的方向航行后,看见灯塔在船正西方向,则这时船与灯塔的距离是( )ABCD【答案】D【解析】设灯塔位于处,船开始的位置为,船行后处于,如图所示,可得,在三角形中,利用正弦定理可得,可得4的内角,的对边分别为,已知,则角( )ABCD【答案】A【解析】,解得,即5如图,在中,点在边上,且,的面积为,则线段的长度为( )AB
3、CD【答案】C【解析】因为,的面积为,所以的面积为,则,即在中,所以,又因为,所以,所以在中,即6设的内角,所对的边分别为,若三边的长为连续的三个正整数,且,则为( )ABCD【答案】D【解析】因为,为连续的三个正整数,且,可得,所以,又因为已知,所以,由余弦定理可得,则由可得,联立得,解得或(舍去),则,故由正弦定理可得7已知在中,若为的外心且满足,则( )ABCD【答案】B【解析】由为的外心且满足,取中点为,则,所以,即,又由余弦定理可得,所以,所以8在斜中,设角,的对边分别为,已知,是的内角平分线,且,则( )ABCD【答案】A【解析】由正弦定理得,得,又平分角,且,令,由,得,即,即,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- (新高考)2021届小题必练15解三角形-教师版
限制150内