2015年普通高等学校招生全国统一考试(浙江卷)理数试题精编版(解析版).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2015年普通高等学校招生全国统一考试(浙江卷)理数试题精编版(解析版).doc》由会员分享,可在线阅读,更多相关《2015年普通高等学校招生全国统一考试(浙江卷)理数试题精编版(解析版).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的1. 已知集合,则( ) A. B. C. D. 【答案】C.2. 某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A. B. C. D. 【答案】C.【解析】试题分析:由题意得,该几何体为一立方体与四棱锥的组合,如下图所示,体积,故选C.【考点定位】1.三视图;2.空间几何体的体积计算.【名师点睛】本题主要考查了根据三视图判断空间几何体的形状,再计算其体积,属于容易题,在解题过程中,根据三视图可以得到该几何体是一个正方体与四棱锥的组合,将组合体的三视图,正方体与锥体的体积计算结合在一
2、起,培养学生的空间想象能力、逻辑推理能力和计算能力,会利用所学公式进行计算,体现了知识点的交汇.3. 已知是等差数列,公差不为零,前项和是,若,成等比数列,则( )A. B. C. D. 【答案】B.【考点定位】1.等差数列的通项公式及其前项和;2.等比数列的概念【名师点睛】本题主要考查了等差数列的通项公式,等比数列的概念等知识点,同时考查了学生的运算求解能力,属于容易题,将,表示为只与公差有关的表达式,即可求解,在解题过程中要注意等等差数列与等比数列概念以及相关公式的灵活运用.4. 命题“且的否定形式是( )A. 且 B. 或C. 且 D. 或 【答案】D.【解析】试题分析:根据全称命题的否
3、定是特称命题,可知选D.【考点定位】命题的否定【名师点睛】本题主要考查了全称命题的否定等知识点,属于容易题,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称(存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义,是今年考试说明中新增的内容,在后续的复习时应予以关注.5. 如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,其中点,在抛物线上,点在轴上,则与的面积之比是( )A. B. C. D. 【答案】A.【考点定位】抛物线的标准方程及其性质来源:学科网ZXXK【名师点睛】本题
4、主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.6. 设,是有限集,定义,其中表示有限集A中的元素个数,命题:对任意有限集,“”是“ ”的充分必要条件;命题:对任意有限集,( )A. 命题和命题都成立 B. 命题和命题都不成立 C. 命题成立,命题不成立 D. 命题不成立,命题成立 【答案】A.【解析】试题分析:命题显然正确,通过如下文氏图亦可知表示的区域不大于
5、的区域,故命题也正确,故选A.【考点定位】集合的性质【名师点睛】本题是集合的阅读材料题,属于中档题,在解题过程中需首先理解材料中相关概念与已知的集合相关知识点的结合,即可知命题正确,同时注重数形结合思想的运用,若用韦恩图表示三个集合,则可将问题等价转化为比较集合区域的大小,即可确定集合中元素个数大小的比较.7. 存在函数满足,对任意都有( )A. B. C. D. 【答案】D.【考点定位】函数的概念【名师点睛】本题主要考查了函数的概念,以及全称量词与存在量词的意义,属于较难题,全称量词与存在量词是考试说明新增的内容,在后续复习时应予以关注,同时,“存在”,“任意”等一些抽象的用词是高等数学中经
6、常会涉及的,也体现了从高中数学到大学高等数学的过渡,解题过程中需对函数概念的本质理解到位,同时也考查了举反例的数学思想.8. 如图,已知,是的中点,沿直线将折成,所成二面角的平面角为,则( )A. B. C. D. 【答案】B.【考点定位】立体几何中的动态问题【名师点睛】本题主要考查立体几何中的动态问题,属于较难题,由于的形状不确定,与的大小关系是不确定的,再根据二面角的定义即可知,当且仅当时,等号成立以立体几何为背景的创新题是浙江高考数学试卷的热点问题,12年,13年选择题压轴题均考查了立体几何背景的创新题,解决此类问题需在平时注重空间想象能力的培养,加强此类问题的训练.2 填空题:本大题共
7、7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线的焦距是 ,渐近线方程是 【答案】,.【考点定位】双曲线的标准方程及其性质【名师点睛】本题主要考查了双曲线的标准方程及其焦距,渐近线等相关概念,属于容易题,根据条件中的双曲线的标准方程可以求得,进而即可得到焦距与渐近线方程,在复习时,要弄清各个圆锥曲线方程中各参数的含义以及之间的关系,避免无谓失分.10. 已知函数,则 ,的最小值是 【答案】,.【解析】试题分析:,当时,当且仅当时,等来源:学+科+网Z+X+X+K号成立,当时,当且仅当时,等号成立,故最小值为.【考点定位】分段函数【名师点睛】本题主要考查分段函数以及求函数的最值,属
8、于容易题,在求最小值时,可以求每个分段上的最小值,再取两个最小值之中较小的一个即可,在求最小值时,要注意等号成立的条件,是否在其分段上,分段函数常与数形结合,分类讨论等数学思想相结合,在复习时应予以关注.11. 函数的最小正周期是 ,单调递减区间是 【答案】,.【考点定位】1.三角恒等变形;2.三角函数的性质【名师点睛】本题考查了三角恒等变形与函数的性质,属于中档题,首先利用二倍角的降幂变形对的表达式作等价变形,其次利用辅助角公式化为形如的形式,再由正弦函数的性质即可得到最小正周期与单调递减区间,三角函数是高考的热点问题,常考查的知识点有三角恒等变形,正余弦定理,单调性周期性等.12. 若,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2015 普通高等学校 招生 全国 统一 考试 浙江 试题 精编 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内