机械振动复习.doc
《机械振动复习.doc》由会员分享,可在线阅读,更多相关《机械振动复习.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年-2023年建筑工程管理行业文档 齐鲁斌创作机械振动一、机械振动(1)定义:中心位置;往复运动(2)条件:回复力;阻力足够小。(3)特点:中心位置;往复运动例1下列属于机械振动选择完整的是( )乒乓球在地面上的来回上下运动;弹簧振子在竖直方向的上下运动;秋千在空中来回的运动;竖于水面上的圆柱形玻璃瓶上下振动A、 B、 C、 D、二、简谐运动1.定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。(2)回复力是
2、一种效果力。是振动物体在沿振动方向上所受的合力。(3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以不处于平衡状态)(4)F= -kx是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。1怎样判断某一振动是简谐运动:图911方法一:从动力学:证明物体在运动方向上所受合力F=-kx。方法二:从运动学特点:例1 证明竖直弹簧振子的振动是简谐运动.解析:如图911所示
3、,设振子的平衡位置为O,向下方向为正方向,此时弹簧的形变为x0,根据胡克定律及平衡条件有mgkx0=0当振子向下偏离平衡位置x时,有:F回=mgk(x+x0)将代入得:F回=kx,故重物的振动满足简谐运动的条件.说明:分析一个振动系统是否为简谐运动,关键是判断它的回复力是否满足:其大小随着位移的变化作正比变化,其方向总与位移方向相反.应理解F=kx式中的k值是由振动系统本身条件所决定,不要将F=kx简单理解为胡克定律中的弹力,在这里就理解为产生简谐运动的回复力的定义式,而且产生简谐运动的回复力可以是一个力,也可以是某个力的分力,也可以是几个力的合力,此题的回复力为弹力和重力的合力.证明思路:确
4、定物体静止时的位置即为平衡位置,考查振动物体在任一点受到回复力的特点是否满足F=kx.例2 如图所示,m和M叠放在一起,M的左端与一弹簧相连,弹簧的另一端与墙壁相连,M和m在弹簧的作用下相对静止一起运动。证明m的运动是简谐运动。2.从总体上描述简谐运动的物理量。 振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的运动范围,用振幅A来描述;在时间上用周期T来描述完成一次全振动所须的时间。(1)振幅A是描述振动强弱的物理量。(注意一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T是描述振动快慢的物理量。(频率f=1/T 也是描述振动
5、快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。对任何简谐振动有共同的周期公式:(其中m是振动物体的质量,k是回复力系数,既振动是简谐运动的判定式F= -kx中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。3.熟练掌握做简谐运动的物体在某一过程中的位移x、回复力F、加速度a、速度v、动能、动量、势能这七个量的相互变化关系(周期、频率、振幅为常量)。(1)从大小相关可分为两类:位移x、回复力F、加速度a、势能;速度v、动能、动量。(2)从矢、标量分为:矢量:位移x、回复力F、加速度a、速度v、动量(变化周期为T);标量:势能、动能(变化周期为T/2)总
6、机械能(不变)。例2关于简谐运动回复力的说法正确的是( )A、回复力中的是指振子相对于平衡位置的位移B、回复力中的是指振子从初位置指向末位置的位移C、振子的回复力一定就是它所受的合力D、振子的回复力一定是恒力2用简谐运动实际运动图象分析简谐运动各量变化:例1 一质点做简谐运动,先后以相同的动量依次通过A、B两点,历时1s,质点通过B点后再经过1s又第二次通过B点,在这两秒钟内质点通过的总路程为12cm,则质点的振动周期为多少?振幅为多少?答案:4s,6cmobcad图2VaVb例2、如图2所示。弹簧振子在振动过程中,振子经a、b两点的速度相同,若它从a到b历时0.2s,从b再回到a的最短时间为
7、0.4s,则该振子的振动频率为:A、1Hz; B、1.25Hz; C、2Hz; D、2.5Hz.答案:B例3一质点在平衡位置O点附近作简谐运动,若从O点开始计时,经过3s质点第一次经过M点,再继续运动,又经过2s它第二次经过M点,则该质点的第三次经过M的所需要的时间是多少?答案:14s秒 或 10/3秒三、典型的简谐运动1.弹簧振子。(1)周期,与振幅无关,只由振子质量和弹簧的劲度决定。(2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。(3)水平弹簧振子的回复力是弹簧的弹力;竖直弹簧振子的回复力是弹簧弹力和重力的合力。2.单摆。(1)定义:线:不可伸长,
8、忽略质量;球:可视为质点;悬点:固定。(2)单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力不为零。(3)当单摆的摆角很小时(小于10)时,单摆的周期,与摆球质量m、振幅A都无关。其中l为摆长,等于从悬点到摆球质心的距离,要区分摆长和摆线长。(4)小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径和小球半径的差。(5)秒摆:T=2s,L约为1米。(6)摆钟问题。单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格
9、子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数),再由频率公式可以得到 (7)利用单摆的周期公式测重力加速度.四、简谐运动图象1.必须掌握两种图象的分析:实际运动图的分析及各运动量函数图象的分析.2.根据简谐运动规律,利用图象可以得出以下判断:(1)振幅A、周期T以及各时刻振子的位置。(2)各时刻位移、回复力、加速度、速度的方向。(3)某段时间内振子的路程(4)某段时间内位移、回复力、加速度、速度、动能、动量、势能、总能量的变化情况。(5)振动方向的判断例8.如图所示,一个弹簧振子在A、B间做简谐运动,O是平衡位置,以某时刻作为计时零点(t=0),经过周期,振子具有正方向的最大加速
10、度,那么四个振动图线中正确反映了振子的振动情况的图线是()D 例9如图为一质点作简谐运动的图象,则在图中t1和t2两个时刻,振子具有相同的物理量是( )例9图A/2-A/2t1t/sx/cmt2642例11图-22t/sx/cm1-1甲乙0.2例10图t/sx/cm5-50.4A、加速度 B、位移 C、速度 D、回复力 C【例10】一质点做简谐运动,如图所示,在0.2 s 到0.3 s这段时间内质点的运动情况是()A、沿负方向运动,且速度不断增大 B、沿负方向运动,且位移不断增大C、沿正方向运动,且速度不断增大 D、沿正方向运动,且加速度不断增大C【例11】如图所示,是质量相等的甲、乙两个物体
11、分别做简谐运动时的图象,则()A、甲、乙物体的振幅分别是2 m和1 m B、甲的振动频率比乙的大C、前2 s内两物体的加速度均为负值 D、第2s末甲的速度最大,乙的加速度最大BCD【例12】如图所示为某一声音的振动图象,关于这个声音的判断正确的是()A、该声是单个简谐运动的声源发出的 B、振动周期是2 sC、振动频率为 D、振动周期为O例12图FED0.2 0.4 0.6-44t/sx/cmABC例11图t/sx/cm1 2 4 6 7 8 10 12C 【例13】如图所示是一弹簧振子的振动图象,由图可知,该振子的振幅是 ,周期是 ,频率是 ,振子在0.8 s内通过的路程是 ,若振子从A时刻开
12、始计时,那么到 点为止,振子完成了一次全振动,图象上B点振子的速度方向是 ,D点振子的速度方向是 。答案:4 cm 0.4 s 2.5Hz 32 cm E -x方向 +x方向【例14】如图所示,A、B两物体组成弹簧振子,在振动过程中A、B始终保持相对静止,图中能正确反映振动过程中A受的摩擦力Ff与振子的位移x关系的图线应为( )C 例4 如图所示的是做简谐运动的质点的振动图像,那么在下列时间内,质点加速度的大小和方向将( )A在0内,沿x轴的负方向,大小在减小B在0内,沿x轴的正方向,大小在减小 C在内,沿x轴的正方向,大小在减小D在内,沿x轴的负方向,大小在增大答案:A例5一弹簧振子作简谐振
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械振动 复习
限制150内