240克塑料注射机液压系统设计计算 完整版.doc
《240克塑料注射机液压系统设计计算 完整版.doc》由会员分享,可在线阅读,更多相关《240克塑料注射机液压系统设计计算 完整版.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年-2023年建筑工程管理行业文档 齐鲁斌创作 240克塑料注射机液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时因螺杆外装有电加热器,而将料融化成黏液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔中,经一定时间的保压冷却后,开模将成型的塑料制品顶出,使完成了一个动作循环。 现以240克塑料注射机为例,进行液压系统设计计算。 塑料注射器的工作循环为: 合模注射保压冷却开模顶出 螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、
2、锁模。锁模的时间比较长,直到开模前这段时间都是锁模阶段。 1240克塑料注射机液压系统设计要求及有关设计参数1.1对液压系统的要求(1)合模运动要平稳,两篇模具闭合时不应有冲击;(2)当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔;(3)预塑进料时,螺杆转动,料被推倒螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必须有一定的后退阻力;(4)为保证安全生产,系统应设有安全联锁装置。1.2液压系统设计参数 240克塑料注射机液压系统设计参数如下: 螺杆直径 38mm 螺杆行程: 200mm 最大注射压力
3、 143MPa 螺杆驱动功率 5KW 螺杆转速 61r/min 注射座行程 240mm 注射座最大推力 26kN 最大合模力(锁模力)910kN 开模力 44kN 动模板最大行程 350mm 快速闭模速度 0.1m/s 慢速闭模速度 0.02m/s 快速开模速度 0.13m/s 慢速开模速度 0.03m/s 注射速度 0.07m/s 注射座前进速度 0.06m/s 注射座后移速度 0.08m/s2.液压执行原件载荷力荷载和转矩计算2.1个液压缸的载荷力计算(1)合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其联动部件的启动惯性力和导轨的摩擦力。锁模时,动模停止运动,其外载荷
4、就是给定的锁模力。开模时,液压缸除要克服给定的开模力外,还克服运动部件的摩擦力。(2)注射座移动缸载荷力 座移缸在推进和退回注射座的过程中,同样要克服摩擦阻力和惯性力,只有当喷嘴接触模具时,才须满足注射座最大推力。(3)注射缸载荷力 注射缸的载荷力在整个注射过程中是变化的,计算时,只须求出最大载荷力。 Fw=d式中,d-螺杆直径,由给定参数知:d=0.038m;p-喷嘴处最大注射压力,已知p=162MPa。由此求得Fw=180kN。各液压缸的外载荷力计算结果列于表1。取液压缸的机械效率为0.9,求得相应的作用于活塞上的载荷力,并列于表1中 表1各液压缸的载荷力液压缸名称工况液压缸外载荷 活塞上
5、载荷力合模缸合模90100锁模9101011开模44 49座移缸移动 2.73顶紧 26 29注射缸注射 162 180。 2.2进料液压马达载荷转矩计算 Tw=783Nm 取液压马达的机械效率为0.95,则其载荷转矩 T=824Nm3.液压系统主要参数计算.3.1初选系统工作压力240克塑料注射机属于小型液压机,载荷最大时为锁模工况,此时,高压油用增压缸提供;其他工况时,载荷都不太高,参考设计手册,初步确定液压系统工作压力为6.5MPa。3.2计算液压缸的主要结构尺寸(1)确定合模缸的活塞及活塞杆直径 合模缸最大载荷时,为锁模工况,其载荷为889kN,工作在活塞杆受压状态。活塞直径 D=此时
6、是由增压缸提供的增压后的进油压力,初定增压比为5,则=56.5MPa=32.5MPa,锁模工况时,回油量极小,故P20,求得合模缸的活塞直径为 Dh=0.199m,取Dh=0.2m按表25取dD=0.7,则活塞杆直径dh=0.70.2m=0.14m,取dh=0.15m。为设计简单加工方便,将增压缸的缸体与合模缸体做成一体(见图1),增压缸的活塞直径也为0.2m。其活塞杆直径按增压比为5,求得 Dz=0.089m,取dz=0.09m (2)注射座移动缸的活塞和活塞杆直径 座移动缸最大载荷为其顶紧之时,此时缸的回油量虽经节流阀,但流量极小,故背压视为零,其活塞杆直径为Dh=0.075m,取Dy=0
7、.01m 由给定的设计参数知,注射座往复速比为0.08/0.06=1.33查表26得d/D=0.5,则活塞杆直径为:=0.50.01m=0.05m(3)确定注射缸的活塞及活塞杆直径 当液态塑料充满模具型腔时,注射缸的载荷达到最大值213KN,此时注射活塞移动速度也近似等于零,回油量极小;故备压力可以忽略不计,这样 Ds=0.188m,取Ds=0.20m 活塞杆直径一般与螺杆外径相同,取ds=0.038m。 3.3计算液压马达的排量 液压马达是单向旋转的,其回油直接回油箱,其视为出口压力为零,机械效率为0.95,这样 VM=0.810-3m3/r 3.4计算液压执行元件实际工作压力 按最后确定的
8、液压缸的结构尺寸合液压马达排量,计算出各工况时液压执行元件实际工作压力,见表2, 表 2 液压执行元件实际工作压力工况执行元件名称载荷备压力-/MPa工作压力-/MPa计算公式合模行程合模缸100KN0.33.3锁模增压缸1011KN-6.5座前进座移缸3KN0.50.76座顶紧30KN-3.7注射注射缸180KN0.35.89预塑进料液压马达824NM-5.923.5计算液压执行元件实际所需流量 根据最后确定的液压缸的结构尺寸或液压马达的排量及其运动速度或转速,计算出个液压执行原件实际所需流量,见表3。 表 3 液压执行元件实际所需流量工况执行原件名称运动速度结构参数流量(L/s)计算公式慢
9、速合模合模缸0.02 m/sA1=0.03m20.6Q=A1V快速合模0.1 m/s3座前进座移缸0.06m/sA1=0.08m20.48Q=A1V座后退0.08m/sA2=0.06m20.48Q=A2V注射注射缸0.07m/sA1=0.03m22.1Q=A1V顶塑进料液压马达61r/minQ=0.873L/r0.89Q=qn慢速开模合模缸0.03m/sA2=0.014m20.42Q=A2V快速开模0.13m/s1.84制定系统方案和拟定液压系统图(1) 执行机构的确定本机动作机构处螺杆是单向旋转外,其他机构均为直线往复运动,各直线运动机构均采用单活塞杆双作用液压缸直接驱动,螺杆则用液压马达驱
10、动,从给定的设计参数可知,锁模时所需的力气最大,为910KN。为此设置增压液压缸,得到锁模时的局部高压来保证锁模力。(2) 合模缸动作回路 合模缸要求其实现快速.慢速.锁模.开模动作。其运动方向由电液换向阀直接控制。快速运动时,需要有较大流量供给。慢速合模只要有小流量供给即可。锁模时,由增压缸供油。(3) 液压马达动作回路 螺杆不要求反转,所以液压马达单向旋转即可,由于其转速要求较高,而对速度平稳性无过高要求,故采用旁路节流调速方式。(4)注射缸运作回路 注射缸运动速度也较快,平稳性要求不高,故也采用旁路节流调速方式。由于预塑时有背压要求,有无杆腔出口处串联背压阀。(5)注射座移动缸运作回路注
11、射座移动缸,采用回油节流调速回路。工艺要求其不工作时,处于浮动状态,故采用Y型中位机能的电磁换向阀。(6)安全联锁措施本系统为保证安全生产,设置的安全门,太安全门下端装一个行程阀,用来控制合模缸的运作。将行程阀串在控制合模缸换向的液动阀控制油路上,安全门没有关闭时,行程阀没被压下,液动换向阀不能进控制油,电液换向阀不能换向,合模缸也不能合模。只有操作者离开,将安全门关闭,压下行程阀,合模缸才能合模从而保障了人身安全。(7)液压源的选择 该液压系统在整个工作循环中需油量变化较大,另外,闭模和注射后又要求有较长时间的保压,所以选用双泵供油系统。液压缸快速运作时,双泵同时供油,慢速运作或保压时由小泵
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 240克塑料注射机液压系统设计计算 完整版 240 塑料 注射 液压 系统 设计 计算
限制150内