城轨车辆电力牵引交流传动控制系统的分析及故障排除设计.doc
《城轨车辆电力牵引交流传动控制系统的分析及故障排除设计.doc》由会员分享,可在线阅读,更多相关《城轨车辆电力牵引交流传动控制系统的分析及故障排除设计.doc(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年-2023年建筑工程管理行业文档 齐鲁斌创作2010届毕业设计说明书 课题名称:城轨车辆电力牵引交流传动控制系统的分析及故障排除设计 2013届毕业设计任务书一、 课题名称:电力牵引交流传动控制系统的分析及故障排除二、 指导老师:首珩三、 设计内容与要求:1、课题概述:随着电力电子技术的发展,电力牵引交流传动系统逐步替代了早期的直流牵引传动系统,在轨道交通领域得到了广泛应用,成为铁路实现高速和重载运输的唯一选择和主要发展方向。而交流传动控制系统是交传机车和电动车组的核心部件,是列车运行的神经中枢系统。分析该系统的工作原理,掌握常见故障的处理方法有着非常重要的现实意义。本课题主要分析电
2、力牵引交流传动控制系统的组成结构及各组成部件的主要功能原理,以及常见的交流传动控制技术;分析系统常见的故障现象及应急处理方法。2、设计内容与要求:(1)设计内容本课题下设3个子课题: CRH动车组交流传动控制系统的分析及故障排除 HXD交传机车传动控制系统的分析及故障排除 城轨车辆交流传动控制系统的分析及故障排除每个子课题设计的主要内容可包括:a.电力牵引交流传动控制系统的发展历史及现状分析b.电力牵引交流传动控制系统的组成结构分析c.电力牵引交流传动控制系统主要组成部件功能和原理分析d.各种交流传动控制技术的对比和分析e.电力牵引交流传动控制系统的常见故障排除f.结论(2)要求a.通过检索文
3、献或其他方式,深入了解设计内容所需要的各种信息;b.能够灵活运用电力电子技术、交流调速技术、CRH动车组HXD型电力机车等基础和专业课程的知识来分析电力机车交流传动控制系统。c.要求学生有一定的电力电子,轨道交通专业基础。四、设计参考书1、 现代变流技术与电气传动2、 电力牵引交流传动与控制3、 CRH2动车组、CRH3动车组4、 HXD1型电力机车5、 HXD2型电力机车6、 HXD3型电力机车五、设计说明书内容1、 封面2、 目录3、 内容摘要(200-400字左右,中英文)4、 引言5、 正文(设计方案比较与选择,设计方案原理、分析、论证,设计结果的说明及特点)6、 结束语7、 附录(参
4、考文献、图纸、材料清单等)六、 设计进程安排第1周: 资料准备与借阅,了解课题思路。第2-3周: 设计要求说明及课题内容辅导。第47周: 进行毕业设计,完成初稿。第7-10周: 第一次检查,了解设计完成情况。第11周: 第二次检查设计完成情况,并作好毕业答辩准备。第12周: 毕业答辩与综合成绩评定。七、毕业设计答辩及论文要求1、 毕业设计答辩要求(1)答辩前三天,每个学生应按时将毕业设计说明书或毕业论文、专题报告等必要资料交指导教师审阅,由指导教师写出审阅意见。(2)学生答辩时,自述部分内容包括课题的任务、目的和意义,所采用的原始资料或参考文献、设计的基本内容和主要方法、成果结论和评价。(3)
5、答辩小组质询课题的关键问题,质询与课题密切相关的基本理论、知识、设计方法、实验方法、测试方法,鉴别学生独立工作能力、创新能力。2、 毕业设计论文要求文字要求:说明书要求打印(除图纸外),不能手写。文字通顺,语言流畅,排版合理,无错别字,不允许抄袭。3、 图纸要求:按工程制图标准制图,图面整洁,布局合理,线条粗细均匀,圆弧连接光滑,尺寸标注规范,文字注释必须使用工程字书写。4、 曲线图表要求:所有曲线、图表、线路图、程序框图、示意图等不准用徒手画,必须按国家规定的标准或工程要求绘制。摘 要 随着电力电子技术的发展,电力牵引交流传动系统逐步代替了早期的直流牵引传动系统,在城市轨道交通领域得到了广泛
6、的应用,成为轨道交通实现高速和重载运输的唯一选择和主要发展方向。而交流传动控制系统是城轨电力牵引传动控制系统的核心部件,是城轨列车运行的神经中枢系统。通过分析城轨车辆牵引传动控制系统的构造和原理,以及常见故障。有着非常重要的现实意义。本课题主要分析城轨车辆电力牵引交流传动控制系统的组成构件及各组成部件的主要功能原理,列车网络控制系统的介绍以及常见的交流传动控制技术,分析该系统常见的故障现象及应急处理方法。并展望了以交流传动技术为方向的我国城轨车辆装备制造业的发展前景。关键词:城轨车辆电力牵引 交流传动 控制系统 故障排除 ABSTRACTWith the development of powe
7、r electronic technology, electric traction drive system gradually took the place of early DC traction drive system, in the city rail transportation has been applied extensively, become the orbit traffic to achieve high speed and heavy haul transportation only option and the main direction of develop
8、ment. The AC drive control system of city rail electric traction drive control is a core component of the system, is the city rail train in the central nervous system. Through the analysis of urban rail vehicle traction control system structure and principle, to grasp the common breakdown processing
9、 method has a very important practical significance.The main topic of city railway vehicle AC drive control system in electric traction components and each component is the main function principle, train network control system is introduced as well as the common AC drive control technology, analyzes
10、 the common faults and emergency treatment method. And look forward to direction of AC drive technology of Chinas urban rail vehicle equipment manufacturing industry development prospect.Key words: Urban rail vehicle Electric traction AC drive Control systemTroubleshooting目录第1章电力牵引交流传动技术的发展历史及现状81.1
11、电力传动形式的转变81.2交流传动技术的发展历史81.3我国交流传动系统的发展91.4我国电力牵引传动技术的现状101.5交流传动技术发展展望11第2章城轨车辆交流传动控制系统的组成及原理122.1城轨车辆交流传动系统的概述122.2城轨车辆交流传动系统的组成122.3城轨车辆交流传动系统的原理132.4北京地铁主辅电路图15第3章 交流传动系统的比较183.1交流系统的分类183.2 电压型变流器和电流型变流器的比较19第4章 列车网络控制系统204.1列车网络控制系统概述204.2我国城市轨道交通列车网络控制系统的应用244.3列车控制和诊断系统33第5章 城轨车辆电力牵引交流控制系统的故
12、障排除355.1城轨列车常见故障及原因355.2轨车辆电力牵引交流控制系统的故障分析375.3牵引及控制系统的检测和检修方法385.4北京地铁10号线故障分析44第6章 总结45心得体会46参考文献47第1章电力牵引交流传动技术的发展历史及现状1.1电力传动形式的转变从很早的年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞
13、大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(G
14、TO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。1.2交流传动技术的发展历史虽然交流电动机,尤其是异步电动机具有上述优势, 但在上世纪70年前,由于直流电机控制的简便性,以及电力电子技术仅具备整流晶闸管器件和完善的整流技术,交流传动无法与直流传动相媲美。随着快速晶闸管的出现,采用异步牵引电机、快速晶闸管变流机组、电流-滑差控制方法的交流传动系统的DE-2500内燃机车问世了,交流传动在牵引领域展现出前所未有的活力。从此,城轨车辆装备进人了新时代。1983年,世界首批5
15、台BR120型大功率干线交流传动电力机车,赢得了德国联邦铁路的认可。BR120机车在系统设计、总体布置、参数选择与优化规则、电路结构方面以及在主要部件,如卧式主变压器、牵引变流器、牵引电动机、空心轴万向节传动装置、辅助变流器等的设计和制造方面, 成功地进行了尝试, 奠定了当代交流机车设计和运行的基本模式。西方发达国家投入巨资研发轨道交通交流传动系统, 经过30年的研发、考核、技术更新, 已完成了机车车辆直流传动向交流传动的产业转换。TGV、新干线、ICE已经成为铁路现代化和国家综合实力的标志之一。交流传动成为铁路实现高速和重载的唯一选择和发展方向。在这发展过程中,电力电子器件的发展是交流传动技
16、术进步的物质基础。第一代机车采用快速晶闸管,变流机组复杂、效率较低、可靠性和可维修性等均不理想。随着大功率GTO器件的诞生, 上世纪80 年代中后期被迅速应用于大功率交流传动机车动车, 技术性能又有新的提高。进入上世纪90年代,中高压IGBT相继问世,器件品质进一步提高,变流机组又开始更新换代。与此同时, 控制策略的发展是交流传动技术进步的理论基础。先后研究、应用了晶闸管移相整流控制、PWM控制、四象限脉冲整流控制、磁场定向控制、直接转矩控制等方法。微电子、信息技术等为交流传动技术进步提供了现代控制手段。从过去复杂的模拟-数字电路实现简单的控制功能,进人现代网络化控制、小型化及模块化结构。微计
17、算机和微处理器品质不断提升,由8位进步到32位、64位,由定点运算进步到浮点运算,处理能力大幅提升,构筑了以高速数字信号处理器为核心的实时控制器。1.3我国交流传动系统的发展迄今,在电力牵引领域出现的交流传动系统基本上分为两类:1) 电流型变流器供电的同步电动机或笼型异步电动机系统。2) 电压型变流器供电的笼型异步电动机系统。为追踪世界新型“交-直-交”电力机车新技术,更为了满足社会经济发展的要求, 推动轨道交通装备技术进步, 我国研究、应用交流传动技术, 经历了技术探索( 理论认识与基础开发)、引进应用( X2000动车组)、合作研制(“蓝箭”动车组和NJ1内燃调车等)、自主开发几个阶段。上
18、世纪70年代,我国开始研究交流电传动系统的基础技术;80年代完成了中等功率交流电传动系统的试验研究;90年代初研制了1Mw大功率变流系统并促进AC4000原型机车的研制与组装;90年代中期相继启动高性能交流传动控制技术、大功率GTO牵引变流器工程化、中大功率IGBT牵引变流器、大功率异步牵引电机等一系列核心技术的攻关工程, 取得了丰硕成果, 并于本世纪初开始装车应用。2001年9月我国自行研制成功200km/h“奥星”交流传动电力机车,同年10月时速200km/h的“蓝箭”号在广深线投入使用;2001年又研制成功采用交流传动技术的200km/h的“先锋”号及160km/h的“中原之星”动力分散
19、型电动车组。从2006年开始,我国分别从日本、德国、法国等国引进先进技术,并消化吸收及国产化,成为“具有我国自主知识产权”的动车组产品系列-CRH系列动车组,它们均属于强动力分散系动车组,这些均预示着机车性能的深刻变革,因而成为今后我国电力机车的发展方向。我国自主研发的交流传动产品还有:国防科技大学磁浮列车、DF8BJ型“西部之光”内燃机车、DJJ2型“中华之星”高速动车组、DJ7CJ型内燃机车、“天梭”电力机车、KZ4A型哈萨克斯坦电力机车、国产化地铁列车、自主知识产权北京地铁客车等,共计50多台套。1.4我国电力牵引传动技术的现状目前我国干线铁路使用的电力机车仍以直流传动制式为主,交流传动
20、机车虽然已经有了运用,但在电力牵引动力中所占的比重很小。由于交流传动机车性能的优越性,国外的主要机车生产商早已停止了直流传动机车的生产,基本上都是采用交流传动方式的牵引技术。我国铁路牵引的交流传动技术应用才刚刚开始,技术上远未达到成熟的程度。按牵引动力配置方式可以分为动力集中方式和动力分散方式。动力集中方式就是传统的机车牵引方式,这是我国目前电力牵引的主要模式,也是我国铁路运用比较成熟的牵引模式。动力分散型动车组是日本首创的,动力分散方式是城市地铁牵引模式的进化和发展,是一种发展迅速的牵引模式。欧洲国家近年来也纷纷采用动力分散型动车组的模式。目前我国也已经有了这种牵引模式的动车组,如“中原之星
21、”动车组,“先锋”号动车组以及CRH系列动车组,但无论在技术上还是在运用管理上都只是刚刚起步。我国已经有了120kmh及以下等级、160kmh等级、200kmh等级、250kmh等级以及300kmh的电力机车或动力分散型动车组。160kmh及其以下等级的机车在技术上已经比较成熟,也有了较为成熟的运用和管理经验;但对于250kmh及其以上等级机车的应用才刚刚开始,技术上也还不够成熟。车载功率可以从总功率和单轴功率两个方面来看:我国直流传动机车的车载总功率最大为6400kW(SS4型机车),单轴功率最大为900kW(SS8型机车);交流传动机车的车载总功率最大为7200kw(SSJ3型机车),单轴
22、功率最大为1200kW(“中华之星”动车组)。作为单轴1200kW的交流传动机车来说,已经达到了较高的水平,只是在技术上还不够成熟。我国铁路机车已经普遍采用微机作为牵引控制系统,但在直流传动机车上仍有相当数量的模拟电子控制系统。动车组上已经开始使用列车和车厢的通信网络实现控制和信息交换,初步形成了分布式控制的雏形。但目前还没有我们自己的、成熟可靠的微机控制系统产品,控制网络的应用尚待完善。以上诸方面的关系是相互交叉和相容的。根据上述分析,可以说我国铁路在电力牵引的技术方面已经基本达到或接近国际先进水平,只是在技术的成熟度和产品的可靠性方面需要进一步提高。总的来说目前在电力牵引系统方面,“中华之
23、星”和“先锋”号动车组的技术含量相当高,已经试验运行了50多万km,有很多经验可以借鉴,而作为中国铁路第六次大提速上线运行的动车组和谐号动车组的技术,可以作为我国牵引动力技术最高水平的代表。1.5交流传动技术发展展望我国城轨车辆交流传动技术已走过50余年的发展里程,取得了巨大进步,铁路运输从速度和功率已被用到技术极限的交-直传动迈入速度更快、功率更高的交流传动的阶段,但这项技术的创新和开拓是永无止境的,它必将随着相关技术的发展而不断提高到更新的水平上。通过贯彻“引进先进技术,联合设计生产,打造中国品牌”的总体要求进行技术引进和合作,我国机车车辆制造业的骨干企业开始批量生产交流传动电力、内燃机车
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 车辆 电力 牵引 交流 传动 控制系统 分析 故障 排除 设计
限制150内