2022届高三数学一轮复习(原卷版)预测10 圆锥曲线中的综合性问题(解析版).doc
《2022届高三数学一轮复习(原卷版)预测10 圆锥曲线中的综合性问题(解析版).doc》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)预测10 圆锥曲线中的综合性问题(解析版).doc(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、预测10 圆锥曲线中的综合性问题概率预测题型预测选择题、填空题解答题考向预测命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;直线、圆等知识点的综合性问题1、 圆锥曲线中的定点问题;2、 圆锥曲线中的定值问题;3、 圆锥曲线中的最值问题;4、 圆锥曲线中的直线方程问题;考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线
2、与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.1、直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程AxByC0(A,B不同时为0)代入圆锥曲线C的方程F(x,
3、y)0,消去y(或x)得到一个关于变量x(或y)的一元方程例:由消去y,得ax2bxc0.(1)当a0时,设一元二次方程ax2bxc0的判别式为,则:>0直线与圆锥曲线C相交;0直线与圆锥曲线C相切;<0直线与圆锥曲线C相离(2)当a0,b0时,即得到一个一元一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合2、弦长公式设斜率为k(k0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB| |x1x2| ·或|AB|
4、·|y1y2| ·.3、中点弦所在直线的斜率圆锥曲线以P(x0,y0)(y00)为中点的弦所在直线的斜率为k,其中k(x1x2),(x1,y1),(x2,y2)为弦的端点坐标圆锥曲线方程直线斜率椭圆:1(ab0)k双曲线:1(a0,b0)k抛物线:y22px(p0)k1、 直线方程的设法技巧:根据题目需要设消x还是消y;合理是的设方程为:y=kx+b,或x=my+n;2、 点的求法:(1)、已知一个点求另外一个点可以运用韦达定理的两根的关系求出另外一个跟,(2)若两条直线的斜率互为相反数或者互相垂直,求另外一个点是可以运用代换法求出。1、【2020年高考全国卷理数】已知M:
5、,直线:,为上的动点,过点作M的切线,切点为,当最小时,直线的方程为ABCD【答案】D【解析】圆的方程可化为,点到直线的距离为,所以直线与圆相离依圆的知识可知,四点四点共圆,且,所以,而,当直线时,此时最小即,由解得,所以以为直径的圆的方程为,即,两圆的方程相减可得:,即为直线的方程故选:D2、【2020年高考全国卷理数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为ABCD【答案】B【解析】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标
6、为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B3、【2020年高考全国卷理数】设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为A4B8C16D32【答案】B【解析】,双曲线的渐近线方程是,直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限,联立,解得,故,联立,解得,故,面积为:,双曲线,其焦距为,当且仅当取等号,的焦距的最小值:.故选:B4、【2020年高考北京】设抛物线的顶点为,焦点为,准线为是抛物线上异于的一点,过作于,则线段的垂直平分线A 经过点B 经过点C 平行于直线D 垂
7、直于直线【答案】B【解析】如图所示:因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,所以线段的垂直平分线经过点.故选:B5、【2020年高考浙江】已知点O(0,0),A(2,0),B(2,0)设点P满足|PA|PB|=2,且P为函数图象上的点,则|OP|=ABCD【答案】D【解析】因为,所以点在以为焦点,实轴长为,焦距为的双曲线的右支上,由可得,即双曲线的右支方程为,而点还在函数的图象上,所以,由,解得,即故选:D6、【2019年高考全国卷理数】设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点若,则C的离心率为A B C2D【答案】A【解析】设与轴交于
8、点,由对称性可知轴,又,为以为直径的圆的半径,又点在圆上,即,故选A7、【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图)给出下列三个结论:曲线C恰好经过6个整点(即横、纵坐标均为整数的点);曲线C上任意一点到原点的距离都不超过;曲线C所围成的“心形”区域的面积小于3其中,所有正确结论的序号是ABCD【答案】C【解析】由得,所以可取的整数有0,1,1,从而曲线恰好经过(0,1),(0,1),(1,0),(1,1), (1,0),(1,1),共6个整点,结论正确.由得,解得,所以曲线上任意一点到原点的距离都不超过. 结论正确.如图所示,易知,四边形的面
9、积,很明显“心形”区域的面积大于,即“心形”区域的面积大于3,说法错误.故选C.8、【2020年高考浙江】已知直线与圆和圆均相切,则_,b=_【答案】;【解析】由题意,到直线的距离等于半径,即,所以,所以(舍)或者,解得.故答案为:9、【2020年新高考全国卷】斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=_【答案】【解析】抛物线的方程为,抛物线的焦点F坐标为,又直线AB过焦点F且斜率为,直线AB的方程为:代入抛物线方程消去y并化简得,解法一:解得 所以解法二:设,则,过分别作准线的垂线,设垂足分别为如图所示.故答案为:10、【2020年高考江苏】在平面直角坐标系xOy中
10、,已知,A,B是圆C:上的两个动点,满足,则PAB面积的最大值是 【答案】【解析】设圆心到直线距离为,则所以令(负值舍去)当时,;当时,因此当时,取最大值,即取最大值为,故答案为:11、【2019年高考浙江卷】已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_【答案】【解析】方法1:如图,设F1为椭圆右焦点.由题意可知,由中位线定理可得,设,可得,与方程联立,可解得(舍),又点在椭圆上且在轴的上方,求得,所以.方法2:(焦半径公式应用)由题意可知,由中位线定理可得,即,从而可求得,所以.12、【2019年高考全国卷理数】已知双曲线C:的左、右
11、焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点若,则C的离心率为_【答案】2【解析】如图,由得又得OA是三角形的中位线,即由,得,又OA与OB都是渐近线,又,又渐近线OB的斜率为,该双曲线的离心率为13、【2020年高考全国卷理数】已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.【解析】(1)由题设得A(a,0),B(a,0),G(0,1).则,=(a,1).由=8得a21=8,即a=3.所以E的方程为+y2=1(2)设C(x1,y1)
12、,D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知3<n<3.由于直线PA的方程为y=(x+3),所以y1=(x1+3).直线PB的方程为y=(x3),所以y2=(x23).可得3y1(x23)=y2(x1+3).由于,故,可得,即将代入得 所以,代入式得解得n=3(含去),n=.故直线CD的方程为,即直线CD过定点(,0)若t=0,则直线CD的方程为y=0,过点(,0).综上,直线CD过定点(,0).14、【2020年高考北京】已知椭圆过点,且()求椭圆C的方程:()过点的直线l交椭圆C于点,直线分别交直线于点求的值【解析】 (1)设椭圆方程为:
13、,由题意可得:,解得:,故椭圆方程为:.(2)设,直线的方程为:,与椭圆方程联立可得:,即:,则:.直线MA的方程为:,令可得:,同理可得:.很明显,且:,注意到:,而:,故.从而.15、【2020年高考浙江】如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于点M(B,M不同于A)()若,求抛物线的焦点坐标;()若存在不过原点的直线l使M为线段AB的中点,求p的最大值【解析】()由得的焦点坐标是()由题意可设直线,点将直线的方程代入椭圆得,所以点的纵坐标将直线的方程代入抛物线得,所以,解得,因此由得,所以当,时,取到最大值16、【2020年新高考全国卷】已
14、知椭圆C:的离心率为,且过点A(2,1)(1)求C的方程:(2)点M,N在C上,且AMAN,ADMN,D为垂足证明:存在定点Q,使得|DQ|为定值【解析】(1)由题设得,解得,所以的方程为(2)设,若直线与轴不垂直,设直线的方程为,代入得于是由知,故,可得将代入上式可得整理得因为不在直线上,所以,故,于是的方程为.所以直线过点.若直线与轴垂直,可得.由得.又,可得.解得(舍去),.此时直线过点.令为的中点,即.若与不重合,则由题设知是的斜边,故.若与重合,则.综上,存在点,使得为定值.17、【2020年新高考全国卷】已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,(1)求C的方
15、程;(2)点N为椭圆上任意一点,求AMN的面积的最大值.【解析】(1)由题意可知直线AM的方程为:,即.当y=0时,解得,所以a=4,椭圆过点M(2,3),可得,解得b2=12.所以C的方程:.(2)设与直线AM平行的直线方程为:,如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时AMN的面积取得最大值.联立直线方程与椭圆方程,可得:,化简可得:,所以,即m2=64,解得m=±8,与AM距离比较远的直线方程:,直线AM方程为:,点N到直线AM的距离即两平行线之间的距离,利用平行线之间的距离公式可得:,由两点之间距离公式可得.所以AMN的面积的最大值:.18、【
16、2019年高考全国卷理数】已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.【解析】(1)由题设得,化简得,所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点(2)(i)设直线PQ的斜率为k,则其方程为由得记,则于是直线的斜率为,方程为由得设,则和是方程的解,故,由此得从而直线的斜率为所以,即是直角三角形(ii)由(i)得,所以PQG的面积设t=k+
17、,则由k>0得t2,当且仅当k=1时取等号因为在2,+)单调递减,所以当t=2,即k=1时,S取得最大值,最大值为因此,PQG面积的最大值为19、【2019年高考全国卷理数】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.【解析】(1)设,则.由于,所以切线DA的斜率为,故 .整理得 设,同理可得.故直线AB的方程为.所以直线AB过定点.(2)由(1)得直线AB的方程为.由,可得.于是,.设分别为点D,E到直线AB的距离,则.因此,四边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)预测10圆锥曲线中的综合性问题(解析版)
限制150内