2022届高三数学一轮复习(原卷版)预测07 数列(原卷版).doc
《2022届高三数学一轮复习(原卷版)预测07 数列(原卷版).doc》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)预测07 数列(原卷版).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、预测07 数 列概率预测题型预测选择题与填空题解答题考向预测2021年高考仍将考查:1、 等差数列与等比数列定义、性质、前项和公式。2、 考查由递推公式求通项公式与已知前项和或前项和与第项的关系式求通项为重点,特别是数列前项和与关系的应用。1、等差数列与等比数列定义、性质、前项和公式。2、考查由递推公式求通项公式与已知前项和或前项和与第项的关系式求通项为重点,特别是数列前项和与关系的应用。3、运算错位相减法或者裂项相消法以及分组求和求数列的和4、数列与不等式等知识点的结合数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解
2、答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要等差数列1、定义:数列若从第二项开始,每一项与前一项的差是同一个常数,则称是等差数列,这个常数称为的公差,通常用表示2、等差数列的通项公式:,此通项公式存在以下几种变形:(1),其中:已知数列中的某项和公差即可求出通项公式(2):已知等差数列的两项即可求出公差,即项的差除以对应序数的差(3):已知首项,末项,公差即可计算出项数3、等差中项:
3、如果成等差数列,则称为的等差中项(1)等差中项的性质:若为的等差中项,则有即(2)如果为等差数列,则,均为的等差中项(3)如果为等差数列,则4、等差数列通项公式与函数的关系:,所以该通项公式可看作关于的一次函数,从而可通过函数的角度分析等差数列的性质。5、等差数列前项和公式:,此公式可有以下变形:(1)由可得:,作用:在求等差数列前项和时,不一定必须已知,只需已知序数和为的两项即可(2)由通项公式可得:作用: 这个公式也是计算等差数列前项和的主流公式 ,即是关于项数的二次函数,且不含常数项,可记为的形式。从而可将的变化规律图像化。(3)当时, 因为 而是的中间项,所以此公式体现了奇数项和与中间
4、项的联系当时,即偶数项和与中间两项和的联系6、等差数列前项和的最值问题:此类问题可从两个角度分析,一个角度是从数列中项的符号分析,另一个角度是从前项和公式入手分析等比数列1、定义:数列从第二项开始,后项与前一项的比值为同一个常数,则称为等比数列,这个常数称为数列的公比注:非零常数列既可视为等差数列,也可视为的等比数列,而常数列只是等差数列2、等比数列通项公式:,也可以为:3、等比中项:若成等比数列,则称为的等比中项(1)若为的等比中项,则有(2)若为等比数列,则,均为的等比中项(3)若为等比数列,则有4、等比数列前项和公式:设数列的前项和为当时,则为常数列,所以当时,则可变形为:,设,可得:5
5、、由等比数列生成的新等比数列(1)在等比数列中,等间距的抽取一些项组成的新数列仍为等比数列(2)已知等比数列,则有 数列(为常数)为等比数列 数列(为常数)为等比数列,特别的,当时,即为等比数列 数列为等比数列 数列为等比数列6、等比数列的判定:(假设不是常数列)(1)定义法(递推公式):(2)通项公式:(指数类函数)(3)前项和公式:数列的求和的方法(1)等差数列求和公式: (2)等比数列求和公式: (3)错位相减法:通项公式的特点在错位相减法的过程中体现了怎样的作用?通过解题过程我们可以发现:等比的部分使得每项的次数逐次递增,才保证在两边同乘公比时实现了“错位”的效果。而等差的部分错位部分
6、“相减”后保持系数一致(其系数即为等差部分的公差),从而可圈在一起进行等比数列求和。体会到“错位”与“相减”所需要的条件,则可以让我们更灵活的使用这一方法进行数列求和(4)裂项相消:的表达式能够拆成形如的形式(),从而在求和时可以进行相邻项(或相隔几项)的相消。从而结果只存在有限几项,达到求和目的。其中通项公式为分式和根式的居多(5)分组求和 如果数列无法求出通项公式,或者无法从通项公式特点入手求和,那么可以考虑观察数列中的项,通过合理的分组进行求和(1)利用周期性求和:如果一个数列的项按某个周期循环往复,则在求和时可将一个周期内的项归为一组求和,再统计前项和中含多少个周期即可(2)通项公式为
7、分段函数(或含有 ,多为奇偶分段。若每段的通项公式均可求和,则可以考虑奇数项一组,偶数项一组分别求和,但要注意两点:一是序数的间隔(等差等比求和时会影响公差公比),二是要对项数的奇偶进行分类讨论(可见典型例题);若每段的通项公式无法直接求和,则可以考虑相邻项相加看是否存在规律,便于求和(3)倒序相加:若数列中的第项与倒数第项的和具备规律,在求和时可以考虑两项为一组求和,如果想避免项数的奇偶讨论,可以采取倒序相加的特点,1、 对于选择题中的选项,可以运用代入法进行排除。2、 对于解答题若涉及到求和问题一定眼验证,确保答案的正确。1、【2019年高考全国I卷理数】记为等差数列的前n项和已知,则AB
8、CD2、【2019年高考全国III卷理数】已知各项均为正数的等比数列的前4项和为15,且,则A16B8C4D23、【2019年高考全国III卷理数】已知各项均为正数的等比数列的前4项和为15,且,则A16B8C4D24、【2020年高考浙江】已知等差数列an的前n项和为Sn,公差,且记,下列等式不可能成立的是ABCD5、【2020年高考北京】在等差数列中,记,则数列A有最大项,有最小项 B有最大项,无最小项C无最大项,有最小项D无最大项,无最小项6、【2019年高考浙江卷】设a,bR,数列an满足a1=a,an+1=an2+b,则A 当B 当C 当D 当7、【2020年高考全国II卷理数】北京
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)预测07数列(原卷版)
限制150内