2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)专题24 立体几何的位置关系(解析版).docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24立体几何的位置关系 命题规律内 容典 型考查空间线面、面面平行与垂直的判定与性质2019年高考全国卷理数以解答题形式考查线面平行的判定与性质2019年高考全国卷理数以解答题形式考查线线垂直2019年高考江苏卷以解答题形式考查线面垂直2019年高考全国卷理数以解答题形式考查面面垂直的判定与性质2019年高考全国卷理数命题规律一 考查空间线线、线面、面面平行与垂直的判定与性质【解决之道】解决此类问题的关键在于熟记平面的基本性质、线线、线面、面面垂直的判定与性质,可以通过实验进行判断.【三年高考】1.【2020年高考浙江卷6】已知空间中不过同一点的三条直线,则“在同一平面”是“两两相交”的(
2、 )A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件【答案】B【解析】解法一:由条件可知当在同一平面,则三条直线不一定两两相交,由可能两条直线平行,或三条直线平行,反过来,当空间中不过同一点的三条直线两两相交,如图,三个不同的交点确定一个平面,则在同一平面,“”在同一平面是“两两相交”的必要不充分条件,故选B解法二:依题意是空间不过同一点的三条直线,当在同一平面时,可能,故不能得出两两相交当两两相交时,设,根据公理可知确定一个平面,而,根据公理可知,直线即,在同一平面综上所述,“在同一平面”是“两两相交”的必要不充分条件故选B2.【2019年高考全国卷理数】设,为两个
3、平面,则的充要条件是( )A内有无数条直线与平行B内有两条相交直线与平行 C,平行于同一条直线D,垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B3.【2018年高考浙江卷】已知平面,直线m,n满足m,n,则“mn”是“m”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】因为m,n,m/n,所以根据线面平行的判定定理得m/.由m/不能得出m与内任一直线平行,所以m/n是m/的充分不必要条件,故选A.4.【20
4、19年高考全国卷理数】如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则( )ABM=EN,且直线BM,EN 是相交直线BBMEN,且直线BM,EN 是相交直线CBM=EN,且直线BM,EN 是异面直线DBMEN,且直线BM,EN 是异面直线【答案】B【解析】如图所示,作于,连接,BD,易得直线BM,EN 是三角形EBD的中线,是相交直线,过作于,连接,平面平面,平面,平面,平面,与均为直角三角形设正方形边长为2,易知,故选B5.【2019年高考北京卷理数】已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l以其中的两个论断作为条件,余
5、下的一个论断作为结论,写出一个正确的命题:_【答案】如果l,m,则lm.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l,m,则lm,正确;(2)如果l,lm,则m,不正确,有可能m在平面内;(3)如果lm,m,则l,不正确,有可能l与斜交、l.故答案为:如果l,m,则lm.命题规律二 以解答题形式考查线面平行的判定与性质【解决之道】解决此类问题的关键要熟记线面平行、面面平行的判定与性质,会利用定理实现线线、线面、线面的相互转化.【三年高考】1.【2020年高考上海卷15】在棱长为10的正方体中,为左侧面上一点,已知点到的距离为3,到的距离为2,则过点且与平行的直线相交的
6、面是( )A B C D 【答案】A【解析】如图由条件可知直线交线段于点,连接,过点作的平行线,必与相交,那么也与平面相交,故选A 2.【2019年高考全国卷理数】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值【解析】(1)连结B1C,ME因为M,E分别为BB1,BC的中点,所以MEB1C,且ME=B1C又因为N为A1D的中点,所以ND=A1D由题设知A1B1DC,可得B1CA1D,故MEND,因此四边形MNDE为平行四边形,MNED又M
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)专题24立体几何的位置关系(解析版)
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内