2022届高三数学一轮复习(原卷版)专题09 概率与统计(解析版).doc
《2022届高三数学一轮复习(原卷版)专题09 概率与统计(解析版).doc》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)专题09 概率与统计(解析版).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题09 概率与统计1(2021·全国高考真题(理)在区间与中各随机取1个数,则两数之和大于的概率为( )ABCD【答案】B【分析】设从区间中随机取出的数分别为,则实验的所有结果构成区域为,设事件表示两数之和大于,则构成的区域为,分别求出对应的区域面积,根据几何概型的的概率公式即可解出【详解】如图所示:设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以故选:B.【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件对应的区域面积,即可顺利解出2(2021·全国高
2、考真题(理)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )ABCD【答案】C【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选:C.3(2021·全国高考真题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数
3、字之和是7”,则( )A甲与丙相互独立B甲与丁相互独立C乙与丙相互独立D丙与丁相互独立【答案】B【分析】根据独立事件概率关系逐一判断【详解】 ,故选:B【点睛】判断事件是否独立,先计算对应概率,再判断是否成立4(2021·全国高考真题)某物理量的测量结果服从正态分布,下列结论中不正确的是( )A越小,该物理量在一次测量中在的概率越大B越小,该物理量在一次测量中大于10的概率为0.5C越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D越小,该物理量在一次测量中落在与落在的概率相等【答案】D【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,为数据的方差,所
4、以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选:D.5(2021·全国高考真题)下列统计量中,能度量样本的离散程度的是( )A样本的标准差B样本的中位数C样本的极差D样本的平均数【答案】AC【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确
5、选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.6(2021·全国高考真题)有一组样本数据,由这组数据得到新样本数据,其中(为非零常数,则( )A两组样本数据的样本平均数相同B两组样本数据的样本中位数相同C两组样本数据的样本标准差相同D两组样数据的样本极差相同【答案】CD【分析】A、C利用两组数据的线性关系有、,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D的正误.【详解】A:且,故平均数不相
6、同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD7(2021·浙江高考真题)袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则_,_.【答案】1 【分析】根据古典概型的概率公式即可列式求得的值,再根据随机变量的分布列即可求出【详解】,所以,, 所以, 则由于故答案为:1;8(2021·全国高考真题(理)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,
7、用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和(1)求,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高)【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和
8、方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1),.(2)依题意,所以新设备生产产品的该项指标的均值较旧设备有显著提高.9(2021·北京高考真题)为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测现有100人,已知其中2人感染病毒(1)若采用“10合1检测法”,且两名患者在同一组,求总检测次数;已知10人分成一组,分10组,两名感染患者在同一组的概率为,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X);(2)若采用“5合1检
9、测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果)【答案】(1)次;分布列见解析;期望为;(2)【分析】(1)由题设条件还原情境,即可得解;求出X的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出,即可得解.【详解】(1)对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;由题意,可以取20,30,则的分布列:所以;(2)由题意,可以取25,30,两名感染者在同一组的概率为,不在同一组的概率为,则.10(2021·全国高考真题)某学校组织“一带
10、一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)类【分析】(1)
11、通过题意分析出小明累计得分的所有可能取值,逐一求概率列分布列即可(2)与(1)类似,找出先回答类问题的数学期望,比较两个期望的大小即可【详解】(1)由题可知,的所有可能取值为,;所以的分布列为(2)由(1)知,若小明先回答问题,记为小明的累计得分,则的所有可能取值为,;所以因为,所以小明应选择先回答类问题11(2021·全国高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经
12、过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义【答案】(1)1;(2)见解析;(3)见解析.【分析】(1)利用公式计算可得.(2)利用导数讨论函数的单调性,结合及极值点的范围可得的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1).(2)设,因为,故,若,则,故.,因为,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,若,因为在为增函数且,而当时,因为在上为减函数,故,故为的一个最小正实根,若,因为且在上为减函数,故1为的一个最小正实根,综上,若,则.若,则,故.此时
13、,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,而,故,又,故在存在一个零点,且.所以为的一个最小正实根,此时,故当时,.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.1(2021·河南高二三模(理)小华忘记了手机开机密码的前三位,只记得第一位和第二位取自0,1,2,3(可以相同) ,第三位是A,B,C中的一个字母,则小华输入一次密码就能够成功解锁的概率为 ( )ABCD【答案】A【分析】结合古典概型的概率的计算公式即可.【详解】输入不同的组合一共有:种可能,而正确密码只有一种可能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)专题09概率与统计(解析版)
限制150内