2022届高三数学一轮复习(原卷版)专题20 圆锥曲线的综合问题(解析版) (2).docx
《2022届高三数学一轮复习(原卷版)专题20 圆锥曲线的综合问题(解析版) (2).docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)专题20 圆锥曲线的综合问题(解析版) (2).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题20圆锥曲线的综合问题 命题规律内 容典 型圆锥曲线中的弦长(面积)问题2020年高考全国卷文数21圆锥曲线中的定点问题2020年高考全国卷文数21圆锥曲线中的最值问题2020年高考浙江卷21圆锥曲线中的定值问题2020山东高考,22圆锥曲线中的取值范围问题2020上海高考,206圆锥曲线中的证明问题2018年高考全国文数命题规律一 圆锥曲线中的弦长(面积)问题【解决之道】圆锥曲线中的弦长(面积)问题,一般利用根与系数的关系采用“设而不求”“整体代入”等解法【三年高考】1.【2020年高考全国卷文数21】已知椭圆的离心率为,分别为的左、右顶点(1)求的方程;(2)若点在上,点在直线上,且,
2、求的面积【解析】解法一:(1)由,得,即,故的方程为(2)设点的坐标为,点的坐标为,根据对称性,只需考虑的情形,此时,有 又, 又联立、,可得,或当时,同理可得,当时,综上所述,可得的面积为解法二:(1),根据离心率,解得或(舍),的方程为:,即(2)点在上,点在直线上,且,过点作轴垂线,交点为,设与轴交点为,根据题意画出图形,如图,又,根据三角形全等条件“”,可得:,设点为,可得点纵坐标为,将其代入,可得:,解得:或,点为或,当点为时,故,可得:点为,画出图象,如图,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:,根据两点间距离公式可得:,面积为:当点为时,故,可得:点为
3、,画出图象,如图,可求得直线的直线方程为:,根据点到直线距离公式可得到直线的距离为:,根据两点间距离公式可得:,面积为:综上所述,面积为:2.【2020年高考天津卷18】已知椭圆的一个顶点为,右焦点为,且,其中为原点()求椭圆的方程;()已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点求直线的方程【解析】()椭圆的一个顶点为,由,得,又由,得,所以椭圆的方程为()直线与以为圆心的圆相切于点,所以,根据题意可知,直线和直线的斜率均存在,设直线的斜率为,则直线的方程为,即,消去,可得,解得或将代入,得,所以点的坐标为,因为为线段的中点,点的坐标为,所以点的坐标为
4、,由,得点的坐标为,所以直线的斜率为,又因为,所以,整理得,解得或所以,直线的方程为或3.【2018年高考全国卷文数】设抛物线的焦点为,过且斜率为的直线与交于,两点,(1)求的方程;(2)求过点,且与的准线相切的圆的方程【答案】(1)y=x1;(2)或【解析】(1)由题意得F(1,0),l的方程为y=k(x1)(k>0)设A(x1,y1),B(x2,y2)由得,故所以由题设知,解得k=1(舍去),k=1因此l的方程为y=x1(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或4.【2018年高考天津卷文
5、数】设椭圆的右顶点为A,上顶点为B已知椭圆的离心率为,(1)求椭圆的方程;(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限若的面积是面积的2倍,求k的值【答案】(1);(2)【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识考查用代数方法研究圆锥曲线的性质考查运算求解能力,以及用方程思想解决问题的能力满分14分(1)设椭圆的焦距为2c,由已知得,又由,可得由,从而所以,椭圆的方程为(2)设点P的坐标为,点M的坐标为,由题意,点的坐标为由的面积是面积的2倍,可得,从而,即易知直线的方程为,由方程组消去y,可得由方程组消去,可得由,可得,两边平方,整理得,解得,或
6、当时,不合题意,舍去;当时,符合题意所以,的值为5.【2018年高考江苏卷】如图,在平面直角坐标系中,椭圆过点,焦点,圆O的直径为(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P若直线l与椭圆C有且只有一个公共点,求点P的坐标;直线l与椭圆C交于两点若的面积为,求直线l的方程【答案】(1)椭圆C的方程为,圆O的方程为;(2);【解析】(1)因为椭圆C的焦点为,可设椭圆C的方程为又点在椭圆C上,所以,解得因此椭圆C的方程为因为圆O的直径为,所以其方程为(2)设直线l与圆O相切于,则,所以直线l的方程为,即由消去y,得(*)因为直线l与椭圆C有且只有一个公共点,所以因为,所以
7、因此点P的坐标为因为三角形OAB的面积为,所以,从而设,由(*)得,所以因为,所以,即,解得舍去),则,因此P的坐标为综上,直线l的方程为命题规律二 圆锥曲线中定点问题【解决之道】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关【三年高考】1.【2020年高考全国卷文数21】已知分别为椭圆的左、右顶点,为的上顶点,为直线上的动点,与的另一交点为与的另一交点为(1)求的方程;(2)证明:直线过定点【解析】(1)依据题意作出如下图像:由椭
8、圆方程可得:, ,椭圆方程为:(2)证明:设,则直线的方程为:,即:,联立直线的方程与椭圆方程可得:,整理得:,解得:或,将代入直线可得:,点的坐标为,同理可得:点的坐标为,直线的方程为:,整理可得:,整理得:,故直线过定点2.【2019年高考全国卷文数】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B(1)证明:直线AB过定点;(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程【答案】(1)见解析;(2)或.【解析】(1)设,则由于,所以切线DA的斜率为,故整理得设,同理可得故直线AB的方程为所以直线AB过定点(2)由(1)得直线A
9、B的方程为由,可得于是.设M为线段AB的中点,则由于,而,与向量平行,所以解得t=0或当=0时,=2,所求圆的方程为;当时,所求圆的方程为3.【2019年高考北京卷文数】已知椭圆的右焦点为,且经过点(1)求椭圆C的方程;(2)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点【答案】(1);(2)见解析.【解析】(1)由题意得,b2=1,c=1所以a2=b2+c2=2所以椭圆C的方程为(2)设P(x1,y1),Q(x2,y2),则直线AP的方程为令y=0,得点M的横坐标又,从而同理,由得则,所以
10、又,所以解得t=0,所以直线l经过定点(0,0)命题规律三 圆锥曲线中的最值问题【解决之道】圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解【三年高考】1.【2020年高考江苏卷18】在平面直角坐标系中,已知椭圆的左、右焦点分别为、,点在椭圆上且在第一象限内,直线与椭圆相交于另一点(1)求的周长;(2)在轴上任取一点,直线与椭圆的右准线相交于点,求的最小值;(3)设点在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)专题20圆锥曲线的综合问题(解析版)(2)
限制150内