2022届高三数学一轮复习(原卷版)预测12 概率统计(解析版).doc
《2022届高三数学一轮复习(原卷版)预测12 概率统计(解析版).doc》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)预测12 概率统计(解析版).doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、预测12 概率统计概率预测题型预测选择题、填空题解答题考向预测1、 常见类型的概率(填空题常见正态分布的概率);2、 概率与排列组合的结合;3、 统计案例;1线性回归方程、离散型随机变量的概率及与直方图等知识点的结合古典概率、离散型随机变量的分布列、均值与方差是高考的热点题型,去年竟有解答题作为压轴题,常与排列、组合、概率等知识综合命题以实际问题为背景考查离散型随机变量的均值与方差在实际问题中的应用,注重与数列、不等式、函数、导数等知识的综合考查,是高考的主要命题方向1. 事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)P(A)P(B),那么称事件A与事件B相互独立(2)性质:若
2、事件A与B相互独立,则P(AB)P(A)P(B)如果事件A与B相互独立,那么A与B,A与B,A与B也相互独立(3)独立重复试验:在相同条件下重复做的n次试验称为n次独立重复试验,在n次独立重复试验中,事件A恰好发生k次的概率为P(Xk)Cpknk(k0,1,2,n)2. 随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X,Y,表示(2)离散型随机变量:所有取值可以一一列出的随机变量3. 离散型随机变量的概率分布及其性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一个值xi(i1,2,n)的概率P(Xxi)pi,则表Xx1x2xixnPp
3、1p2pipn称为离散型随机变量X的概率分布列,简称为X的概率分布,有时为了表达简单,也用等式P(Xxi)pi,i1,2,n表示X的概率分布(2)离散型随机变量概率分布的性质pi0(i1,2,n);p1p2pn14. 常见离散型随机变量的概率分布(1)两点分布:若随机变量X服从两点分布,即其概率分布为X01P1pp其中pP(X1)称为成功概率(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件“Xr”发生的概率为P(Xr),r0,1,2,m,其中mminM,n,且nN,MN,n,M,NN*,称分布列为超几何分布X01mP(3)二项分布XB(n,p),记为Cpkqnk
4、B(k;n,p)X01knPCp0qnCp1qn1CpkqnkCpnq05. 求概率分布的步骤(1)明确随机变量X取哪些值;(2)求X取每一个值的概率;(3)列成表格6. 离散型随机变量的均值与方差若离散型随机变量X的概率分布为Xx1x2xixnPp1p2pipn(1)均值称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平(2)方差称D(X)xiE(x)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,D(X)越小,稳定性越高,波动性越小,其算术平方根为随机变量X的标准差2. 均值与方差的性质(1)E(aXb)
5、aE(X)b(2)D(aXb)a2D(X)(a,b为常数)3. 两点分布、二项分布、超几何分布的期望、方差(1)若X服从两点分布,则E(X)p,D(X)p(1p)(2)若X服从二项分布,即XB(n,p),则E(X)np,D(X)np(1p)(3)若X服从超几何分布,即XH(n,M,N)时,E(X)8 正态曲线及性质(1)正态曲线的定义函数,(x)e,x(,)(其中实数和(>0)为参数)的图像为正态分布密度曲线,简称正态曲线(是正态分布的期望,是正态分布的标准差)(2)正态曲线的特点曲线位于x轴上方与x轴不相交;曲线是单峰的,它关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为1;
6、当一定时,曲线随着的变化而沿x轴平移;当一定时,曲线的形状由确定越小,曲线越“高瘦”,表示总体的分布越集中;,越大,曲线越“矮胖”,表示总体的分布越分散5. 正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<Xb),(x)dx,则称随机变量X服从正态分布,记作XN(,2)(2)正态分布的三个常用数据P(<X)0.6826;P(2<X2)0.9544;P(3<X3)0.99749. 变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系(2)从散点图上看
7、,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关2. 两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线(2)回归方程为ybxa_,其中其中a,b是待定参数,(yibxia)2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法(4)相关系数:当r0时,表明两个变量正相关;当r0时,表明两个变量负相关r的绝对值越接近于1,表明两个变量的线性相关性越强r的绝对值越接近
8、于0,表明两个变量之间几乎不存在线性相关关系通常|r|大于0.75时,认为两个变量有很强的线性相关性3. 独立性检验(1)2×2列联表设X,Y为两个变量,它们的取值分别为x1,x2和y1,y2,其样本频数列联表(2×2列联表)如下:y1y2总计x1ababx2cdcd总计acbdabcd(2)独立性检验利用随机变量K2(也可表示为2)的观测值k(其中nabcd为样本容量)来判断“两个变量有关系”的方法称为独立性检验常用结论(1)求解回归方程的关键是确定回归系数a,b,应充分利用回归直线过样本中心点 (x,y)(2)根据K2的值可以判断两个分类变量有关的可信程度,若K2越大,
9、则两分类变量有关的把握越大(3)根据回归方程计算的b值,仅是一个预报值,不是真实发生的值1、【2020年高考全国II卷理数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压为解决困难,许多志愿者踊跃报名参加配货工作已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A10名B18名C24名D32名【答案】B【解析】由题意,第二天新增订单数为,设需要志愿者x名,,故需要志愿者名.故选:
10、B2、【2020年高考全国卷理数】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A BCD【答案】D【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率和温度的回归方程类型的是.故选:D.3、【2020年高考山东】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜
11、欢足球又喜欢游泳的学生数占该校学生总数的比例是A62%B56%C46%D42%【答案】C【解析】记“该中学学生喜欢足球”为事件,“该中学学生喜欢游泳”为事件,则“该中学学生喜欢足球或游泳”为事件,“该中学学生既喜欢足球又喜欢游泳”为事件,则,所以所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为.故选:C.4、【2020年高考全国III卷理数】在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是ABCD【答案】B【解析】对于A选项,该组数据的平均数为,方差为;对于B选项,该组数据的平均数为,方差为;对于C选项,该组数据的平均数为,方差为
12、;对于D选项,该组数据的平均数为,方差为.因此,B选项这一组标准差最大.故选:B.5、【2020年高考山东】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.A若n=1,则H(X)=0B若n=2,则H(X)随着的增大而增大C若,则H(X)随着n的增大而增大D若n=2m,随机变量Y所有可能的取值为,且,则H(X)H(Y)【答案】AC【解析】对于A选项,若,则,所以,所以A选项正确.对于B选项,若,则,所以,当时,当时,两者相等,所以B选项错误.对于C选项,若,则,则随着的增大而增大,所以C选项正确.对于D选项,若,随机变量的所有可能的取值为,且().由于,所以,所
13、以,所以,所以,所以D选项错误.故选:AC6、【2020年高考天津】从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为A10 B18 C20 D36【答案】B【解析】根据直方图,直径落在区间之间的零件频率为:,则区间内零件的个数为:.故选:B.7、【2019年高考全国卷理数】西游记三国演义水浒传和红楼梦是中国古典文学瑰宝,并称为中国古典小说四大名著某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过西游记或红楼梦的学生共有90位,阅读过红楼梦的学生共有80位,阅读过西游记且阅读过红楼
14、梦的学生共有60位,则该校阅读过西游记的学生人数与该校学生总数比值的估计值为A0.5B0.6C0.7 D0.8【答案】C【解析】由题意得,阅读过西游记的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7故选C8、【2019年高考浙江卷】设0a1,则随机变量X的分布列是则当a在(0,1)内增大时,A增大 B减小C先增大后减小 D先减小后增大【答案】D【解析】方法1:由分布列得,则,则当在内增大时,先减小后增大故选D方法2:则,则当在内增大时,先减小后增大故选D9、【2020年高考天津】已知甲、乙两球落入盒子的概率分别为和假定两球是否落入盒子互不影响,则甲、乙
15、两球都落入盒子的概率为_;甲、乙两球至少有一个落入盒子的概率为_【答案】 【解析】甲、乙两球落入盒子的概率分别为,且两球是否落入盒子互不影响,所以甲、乙都落入盒子概率为,甲、乙两球都不落入盒子的概率为,所以甲、乙两球至少有一个落入盒子的概率为.故答案为:;.【点睛】本题主要考查独立事件同时发生的概率,以及利用对立事件求概率,属于基础题.10、【2020年高考浙江】盒中有4个球,其中1个红球,1个绿球,2个黄球从盒中随机取球,每次取1个,不放回,直到取出红球为止设此过程中取到黄球的个数为,则_,_【答案】,【解析】因为对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,所以,随机变量,所以.故答
16、案为:.11、【2020年高考全国卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛比赛四场结束,共有三种情况:甲连胜四场的概率为;乙连胜四
17、场的概率为;丙上场后连胜三场的概率为所以需要进行第五场比赛的概率为(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为,因此丙最终获胜的概率为12、【2020年高考全国卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷
18、)和这种野生动物的数量,并计算得,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi) (i=1,2,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由附:相关系数,【解析】(1)由已知得样本平均数,从而该地区这种野生动物数量的估计值为60×200=12000(2)样本的相关系数(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样理由如
19、下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计13、【2020年高考全国III卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级0,200(200,400(400,6001(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为
20、1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次400人次>400空气质量好空气质量不好附:K2=,P(K2k)0.050 0.010 0.001k3.841 6.635 10.828 【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气
21、质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为(3)根据所给数据,可得列联表:人次400人次>400空气质量好3337空气质量不好228根据列联表得由于,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关14、【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表: 3218468123710(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;(2)根据所给数据,完成下面的列联表: (3)根据(2)中的列联表,判断是否有的把
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)预测12概率统计(解析版)
限制150内