2022届高三数学一轮复习(原卷版)第九章 9.3圆的方程-教师版.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022届高三数学一轮复习(原卷版)第九章 9.3圆的方程-教师版.docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)第九章 9.3圆的方程-教师版.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第1课时进门测判断下列结论是否正确(请在括号中打“”或“×”)(1)确定圆的几何要素是圆心与半径()(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(xx1)(xx2)(yy1)(yy2)0.()(3)方程Ax2BxyCy2DxEyF0表示圆的充要条件是AC0,B0,D2E24AF>0.()(4)方程x22axy20一定表示圆(×)(5)若点M(x0,y0)在圆x2y2DxEyF0外,则xyDx0Ey0F0.()作业检查无第2课时阶段训练题型一求圆的方程例1(1)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2xy0的距
2、离为,则圆C的方程为_(2)一个圆经过椭圆1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为_答案(1)(x2)2y29(2)2y2解析(1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2xy0的距离d,解得a2,所以圆C的半径r|CM|3,所以圆C的方程为(x2)2y29.(2)由题意知圆过(4,0),(0,2),(0,2)三点,(4,0),(0,2)两点的垂直平分线方程为y12(x2),令y0,解得x,圆心为,半径为.思维升华(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程(2)待定系数法若已知条件与圆心(a,b)和半径r有关,则
3、设圆的标准方程依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值已知圆C关于y轴对称,经过点A(1,0),且被x轴分成两段弧,弧长之比为12,则圆C的标准方程为_答案x2(y±)2解析圆C关于y轴对称,可设C(0,b),设圆C的半径为r,则圆C的标准方程为x2(yb)2r2,依题意,得解得于是圆C的标准方程为x2(y±)2.题型二与圆有关的最值问题例2已知点(x,y)在圆(x2)2(y3)21上求xy的最大值和最小值解设txy,则yxt,t可视为
4、直线yxt的在y轴上的截距,xy的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的在y轴上的截距由直线与圆相切得圆心到直线的距离等于半径,即1,解得t1或t1.xy的最大值为1,最小值为1.引申探究1在例2的条件下,求的最大值和最小值解可视为点(x,y)与原点连线的斜率,的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率设过原点的直线的方程为ykx,由直线与圆相切得圆心到直线的距离等于半径,即1,解得k2或k2.的最大值为2,最小值为2.2在例2的条件下,求的最大值和最小值解,求它的最值可视为求点(x,y)到定点(1,
5、 2)的距离的最值,可转化为圆心(2,3)到定点(1,2)的距离与半径的和或差又圆心到定点(1,2)的距离为,的最大值为1,最小值为1.思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解(2)与圆上点(x,y)有关代数式的最值的常见类型及解法形如u型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;形如taxby型的最值问题,可转化为动直线的截距的最值问题;形如(xa)2(yb)2型的最值问题,可转化为动点到定点(a,b)的距离平方的最值问题已知实数x,y满足方程x2y24x1
6、0.求:(1)的最大值和最小值;(2)yx的最小值;(3)x2y2的最大值和最小值解(1)如图,方程x2y24x10表示以点(2,0)为圆心,以为半径的圆设k,即ykx,则圆心(2,0)到直线ykx的距离为半径,即直线与圆相切时,斜率取得最大值、最小值由,解得k23,kmax,kmin.(2)设yxb,则yxb,当且仅当直线yxb与圆切于第四象限时,在y轴上的截距b取最小值,由点到直线的距离公式,得,即b2±,故(yx)min2.(3)x2y2是圆上的点与原点的距离的平方,故连接OC,与圆交于B点,并延长交圆于C,则(x2y2)max|OC|2(2)274,(x2y2)min|OB|
7、2(2)274.题型三与圆有关的轨迹问题例3已知圆x2y24上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点(1)求线段AP中点的轨迹方程;(2)若PBQ90°,求线段PQ中点的轨迹方程解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x2,2y)因为P点在圆x2y24上,所以(2x2)2(2y)24,故线段AP中点的轨迹方程为(x1)2y21.(2)设PQ的中点为N(x,y),在RtPBQ中,|PN|BN|.设O为坐标原点,连接ON,则ONPQ,所以|OP|2|ON|2|PN|2|ON|2|BN|2,所以x2y2(x1)2(y1)24.故线段PQ
8、中点的轨迹方程为x2y2xy10.思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等设定点M(3,4),动点N在圆x2y24上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹解如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,故,.从而又N(x3,y4)在圆上,故(x3)2(y4)24.因此所求轨迹为圆:(x3)2
9、(y4)24,但应除去两点和(点P在直线OM上的情况)第3课时阶段重难点梳理1圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(xa)2(yb)2r2(r>0)圆心(a,b)半径为r一般x2y2DxEyF0充要条件:D2E24F>0圆心坐标:(,)半径r【知识拓展】1确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D、E、F的方程组;(3)解出a、b、r或D、E、F代入标准方程或一般方程2点与圆的位置关系点和圆的位置关系有三种圆的标准方程(xa)2(yb)2r2,点M(
10、x0,y0)(1)点在圆上:(x0a)2(y0b)2r2;(2)点在圆外:(x0a)2(y0b)2>r2;(3)点在圆内:(x0a)2(y0b)2<r2.重点题型训练典例在平面直角坐标系xOy中,曲线yx26x1与坐标轴的交点都在圆C上,求圆C的方程思想方法指导本题可采用两种方法解答,即代数法和几何法(1)一般解法(代数法):可以求出曲线yx26x1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题规
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)第九章9.3圆的方程-教师版
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内