高考数学一轮复习总教案:9.1 椭 圆_20210103224751.doc
《高考数学一轮复习总教案:9.1 椭 圆_20210103224751.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习总教案:9.1 椭 圆_20210103224751.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、淘宝店铺:漫兮教育第九章圆锥曲线与方程高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质;4.了解圆锥曲线的简单应用;5.理解数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系.本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的理解和应用
2、;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系.圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式出现,小题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a2,故a,由勾股定理得,()2()24c2,所以c2,b
3、2a2c2,故所求方程为1或1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2ny21(m0,n0且mn);(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如
4、图,A(2,2),B(,0),C(0,),D(2,2),E(2,),F(3,2).通过观察可知道点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.显然半焦距b,则不妨设椭圆的方程是1,则将点A(2,2)代入可得m12,故该椭圆的方程是1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y2px1,y2px2,则可知B(,0),C(0,)不是抛物线上的点.而D(2,2),F(3,2)正好符合.又因为椭圆的交点在x轴上,故B(,0),C(0,)不可能同时出现.故选用A(2,2),E(2,)这两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 教案 9.1 _20210103224751
限制150内