高考数学一轮复习总教案:18.4 柯西不等式和排序不等式_20210103224802.doc
《高考数学一轮复习总教案:18.4 柯西不等式和排序不等式_20210103224802.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习总教案:18.4 柯西不等式和排序不等式_20210103224802.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、18.4柯西不等式和排序不等式典例精析题型一用柯西不等式、排序不等式证明不等式【例1】设a1,a2,an都为正实数,证明:a1a2an.【证明】方法一:由柯西不等式,有来源:()(a2a3ana1)(···)2(a1a2an)2.不等式两边约去正数因式a1a2an即得所证不等式.方法二:不妨设a1a2an,则aaa,.来源:由排序不等式有a·a·a·a·a·a·a·a1a2an,故不等式成立.方法三:由均值不等式有a22a1,a32a2,a12an,将这n个不等式相加得a2a3ana12(a1a
2、2an),整理即得所证不等式.【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知abc1,且a、b、c是正数,求证:9.【证明】左边2(abc)()(ab)(bc)(ca)()(111)29,(或左边(ab)(bc)(ca)()332229)所以9.题型二用柯西不等式求最值来源:学§科§网【例2】 若实数x,y,z满足x2y3z2,求x2y2z2的最小值.【解析】 由柯西不等式得,(122232)(x2y2z2)(x2y3z)
3、24(当且仅当1kx,2ky,3kz时等号成立,结合x2y3z2,解得x,y,z),所以14(x2y2z2)4.所以x2y2z2.故x2y2z2的最小值为.【点拨】 根据柯西不等式,要求x2y2z2的最小值,就要给x2y2z2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x2y3z的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x22y23z2,求3x2yz的最小值.【解析】因为(x22y23z2)32()2()2(3xy·z·)2(3x2yz)2,所以(3x2yz)212,即23x2yz2,当且仅当x,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 教案 18.4 不等式 排序 _20210103224802
限制150内