高考数学一轮复习总教案:8.5 直线与圆的综合应用.doc
《高考数学一轮复习总教案:8.5 直线与圆的综合应用.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习总教案:8.5 直线与圆的综合应用.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.5直线与圆的综合应用典例精析题型一直线和圆的位置关系的应用【例1】已知圆C:(x1)2(y2)225及直线l:(2m1)x(m1)y7m4 (mR).来源:来源:数理化网(1)求证:不论m为何值,直线l恒过定点;(2)判断直线l与圆C的位置关系;(3)求直线l被圆截得的弦长最短时的弦长及此时直线的方程.【解析】(1)证明:直线方程可写作xy4m(2xy7)0,由方程组可得来源:所以不论m取何值,直线l恒过定点(3,1).(2)由5,故点(3,1)在圆内,即不论m取何值,直线l总与圆C相交.(3)由平面几何知识可知,当直线与过点M(3,1)的直径垂直时,弦|AB|最短. |AB|224,此时
2、 k,即2,解得m,代入原直线方程,得l的方程为2xy50.【点拨】解决弦长问题时,可利用弦长的几何意义求解.【变式训练1】若函数f(x)eax的图象在x0处的切线l与圆C:x2y21相离,则P(a,b)与圆C的位置关系是()A.在圆外B.在圆内C.在圆上D.不能确定【解析】选B.f(x)eaxf(x)eaxf(0).又f(0),所以切线l的方程为y(x0),即axby10,由l与圆C:x2y21相离得11,即点P(a,b)在圆内,故选B. 题型二和圆有关的对称问题【例2】设O为坐标原点,曲线x2y22x6y10上有两点P、Q关于直线xmy40对称,又满足·0.(1)求m的值;(2)
3、求直线PQ的方程.来源:【解析】(1)曲线方程可化为(x1)2(y3)29,是圆心为(1,3),半径为3的圆.因为点P,Q在圆上且关于直线xmy40对称,所以圆心(1,3)在直线xmy40上,代入得m1.(2)因为直线PQ与直线yx4垂直,所以设 P(x1,y1),Q(x2,y2),则直线PQ的方程为yxb.将直线yxb代入圆的方程,得2x22(4b)xb26b10,4(4b)24×2(b26b1)0,解得23b23.x1x2b4,x1x2,y1y2(x1b)(x2b)b2b(x1x2)x1x2,因为·0,所以x1x2y1y20,即0,得b1.故所求的直线方程为yx1.【点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 教案 8.5 直线 综合 应用
限制150内