高考数学一轮复习总教案:2.7 幂函数与函数的图象_20210103224753.doc
《高考数学一轮复习总教案:2.7 幂函数与函数的图象_20210103224753.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习总教案:2.7 幂函数与函数的图象_20210103224753.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.7幂函数与函数的图象典例精析题型一幂函数的图象与性质【例1】点(,2)在幂函数f(x)的图象上,点(2,)在幂函数g(x)的图象上.(1)求f(x)、g(x)的解析式;(2)问当x为何值时,有:g(x)f(x);f(x)g(x);f(x)g(x).【解析】(1)设f(x)xa,因为点(,2)在幂函数f(x)的图象上,将(,2)代入f(x)xa中,得2()a,解得a2,即f(x)x2.设g(x)xb,因为点(2,)在幂函数g(x)的图象上,将(2,)代入g(x)xb中,得(2)b,解得b2,即g(x)x2.(2)在同一坐标系中作出f(x)和g(x)的图象,如图所示,由图象可知:当x1或x1时
2、,g(x)f(x);当x±1时,f(x)g(x);当1x1且x0时,f(x)g(x).【点拨】(1)求幂函数解析式的步骤:设出幂函数的一般形式yxa(a为常数);根据已知条件求出a的值;写出幂函数的解析式.本题的第(2)问采用了数形结合的思想,即在同一坐标系下画出两函数的图象,借助图象求出不等式和方程的解.这一问也可用分类讨论的思想.x2,即x41,x±1,以x1,1为分界点分x1,1x1,x1,x±1五种情况进行讨论,也能得到同样的结果.【变式训练1】函数f(x)(m2m1) 是幂函数,且当x(0,)时是减函数,求实数m.【解析】因为f(x)为幂函数,所以m2m
3、11,解得m2或m1.当m2时,f(x)x3在(0,)上是减函数;当m1时,f(x)x0在(0,)上不是减函数.所以m2.题型二作函数图象【例2】作下列函数图象:(1)y1log2x;(2)y2|x|1;(3)y|x24|.【解析】(1)y1log2x的图象是:(2)y2|x|1的图象是:(3)y|x24|的图象是:【变式训练2】在下列图象中,二次函数yax2bx与指数函数y()x的图象只可能是()【解析】A.题型三用数形结合思想解题来源:来源:【例3】已知f(x)|x24x3|.(1)求f(x)的单调区间;(2)求m的取值范围,使方程f(x)mx有4个不同实根.【解析】递增区间为1,2,3,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 教案 2.7 函数 图象 _20210103224753
限制150内