2022届高三数学一轮复习(原卷版)第二章 2.7函数图像-学生版.docx
《2022届高三数学一轮复习(原卷版)第二章 2.7函数图像-学生版.docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)第二章 2.7函数图像-学生版.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第1课时进门测1、判断下列结论是否正确(请在括号中打“”或“×”)(1)当x(0,)时,函数y|f(x)|与yf(|x|)的图象相同()(2)函数yaf(x)与yf(ax)(a>0,且a1)的图象相同()(3)函数yf(x)与yf(x)的图象关于原点对称()(4)若函数yf(x)满足f(1x)f(1x),则函数f(x)的图象关于直线x1对称()(5)将函数yf(x)的图象向右平移1个单位得到函数yf(x1)的图象()2、函数f(x)x的图象关于()Ay轴对称 Bx轴对称C原点对称 D直线yx对称3、函数y2x2e|x|在2,2的图象大致为()4、函数f(x)的图象向右平移1个
2、单位长度,所得图象与曲线yex关于y轴对称,则f(x)的解析式为()Af(x)ex1 Bf(x)ex1Cf(x)ex1 Df(x)ex15、已知函数f(x)且关于x的方程f(x)a0有两个实根,则实数a的取值范围是_作业检查无第2课时阶段训练题型一作函数的图象例1作出下列函数的图象(1)y()|x|;(2)y|log2(x1)|;(3)y;(4)yx22|x|1.【同步练习】1、作出下列函数的图象(1)y|x2|·(x1);(2)y.题型二识图与辨图例2(1)函数f(x)2xtan x在(,)上的图象大致为() (2)已知定义在区间0,2上的函数yf(x)的图象如图所示,则yf(2x
3、)的图象为()【同步练习】函数y的图象大致为() (2)函数f(x)|x|(其中aR)的图象不可能是()第3课时阶段重难点梳理1描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象2图象变换(1)平移变换(2)对称变换yf(x)yf(x);yf(x)yf(x);yf(x)yf(x);yax (a>0,且a1)ylogax(a>0且a1)(3)伸缩变换yf(x)yf(ax)yf(x)yaf(x)(4)翻折变换yf(x)y|f(x)|.yf(x)yf(|x|)1函数对称的重
4、要结论(1)函数yf(x)与yf(2ax)的图象关于直线xa对称(2)函数yf(x)与y2bf(2ax)的图象关于点(a,b)中心对称(3)若函数yf(x)对定义域内任意自变量x满足:f(ax)f(ax),则函数yf(x)的图象关于直线xa对称2函数图象平移变换八字方针(1)“左加右减”,要注意加减指的是自变量(2)“上加下减”,要注意加减指的是函数值重点题型训练题型三函数图象的应用命题点1研究函数的性质例3(1)已知函数f(x)x|x|2x,则下列结论正确的是()Af(x)是偶函数,递增区间是(0,)Bf(x)是偶函数,递减区间是(,1)Cf(x)是奇函数,递减区间是(1,1)Df(x)是奇
5、函数,递增区间是(,0)(2)若函数yf(2x1)是偶函数,则函数yf(x)图象的对称轴方程是()Ax1 Bx1Cx2 Dx2例4函数f(x)是定义域为(,0)(0,)的奇函数,在(0,)上单调递增,图象如图所示,若x·f(x)f(x)<0,则x的取值范围为_命题点3求解函数零点问题例5已知函数f(x) 其中m>0,若存在实数b,使得关于x的方程f(x)b有三个不同的根,则m的取值范围是_【同步练习】(1)函数f(x)是定义在4,4上的偶函数,其在0,4上的图象如图所示,那么不等式<0的解集为_(2)已知函数f(x)|x2|1,g(x)kx.若方程f(x)g(x)有
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)第二章2.7函数图像-学生版
限制150内