2022届高三数学一轮复习(原卷版)第十二章 12.5立体几何问题-教师版.docx
《2022届高三数学一轮复习(原卷版)第十二章 12.5立体几何问题-教师版.docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)第十二章 12.5立体几何问题-教师版.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第1课时进门测1多面体的三视图如图所示,则该多面体的体积为()A. B2 C. D.答案D解析由三视图可知该几何体为一个三棱柱削去一个三棱锥得到的几何体,该三棱柱的体积为×2×2×24,三棱锥的体积为××2×2×1,所以该几何体的体积为4,故选D.2正三棱柱ABCA1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为()A相交 B平行C垂直相交 D不确定答案B解析如图取B1C1中点为F,连接EF,DF,DE,则EFA1B1,DFB1B,平面EFD平面A1B1BA,DE平面A1B1BA.3设,是
2、三个平面,a,b是两条不同直线,有下列三个条件:a,b;a,b;b,a.如果命题“a,b,且_,则ab”为真命题,则可以在横线处填入的条件是_(把所有正确的序号填上)答案或解析由线面平行的性质定理可知,正确;当b,a时,a和b在同一平面内,且没有公共点,所以平行,正确故应填入的条件为或.4在正四棱柱ABCDA1B1C1D1中,AA12AB,则直线CD与平面BDC1所成角的正弦值等于_答案解析以D为坐标原点,建立空间直角坐标系,如图,设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2)设平面BDC1的法向量
3、为n(x,y,z),则n,n,则令y2,得平面BDC1的一个法向量为n(2,2,1)设CD与平面BDC1所成的角为,则sin |cosn,|.作业检查无第2课时阶段训练题型一求空间几何体的表面积与体积例1如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AECF,EF交BD于点H,将DEF沿EF折到DEF的位置 (1)证明:ACHD;(2)若AB5,AC6,AE,OD2,求五棱锥DABCFE的体积(1)证明由已知得ACBD,ADCD,又由AECF得,故ACEF,由此得EFHD,折后EF与HD保持垂直关系,即EFHD,所以ACHD.(2)解由EFAC得.由AB5,AC6得
4、DOBO4,所以OH1,DHDH3,于是OD2OH2(2)2129DH2,故ODOH.由(1)知ACHD,又ACBD,BDHDH,所以AC平面DHD,于是ACOD,又由ODOH,ACOHO,所以OD平面ABC.又由得EF.五边形ABCFE的面积S×6×8××3.所以五棱锥DABCFE的体积V××2.思维升华(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解其中,等积转换法多用来求三棱锥的体积(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解(3)若以三视图
5、的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解正三棱锥的高为1,底面边长为2,内有一个球与它的四个面都相切(如图)求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积解(1)底面正三角形中心到一边的距离为××2,则正棱锥侧面的斜高为.S侧3××2×9.S表S侧S底9××(2)296.(2)设正三棱锥PABC的内切球球心为O,连接OP,OA,OB,OC,而O点到三棱锥的四个面的距离都为球的半径r. VPABCVOPABVOPBCVOPACVOABCS侧·rSABC·
6、rS表·r(32)r.又VPABC×××(2)2×12,(32)r2,得r2.S内切球4(2)2(4016).V内切球(2)3(922).题型二空间点、线、面的位置关系例2如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,ABBC,AA1AC2,BC1,E,F分别是A1C1,BC的中点(1)求证:平面ABE平面B1BCC1;(2)求证:C1F平面ABE;(3)求三棱锥EABC的体积(1)证明在三棱柱ABCA1B1C1中,BB1底面ABC.因为AB平面ABC,所以BB1AB.又因为ABBC,BCBB1B,所以AB平面B1BCC1.又AB平面AB
7、E,所以平面ABE平面B1BCC1.(2)证明方法一如图1,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FGAC,且FGAC.因为ACA1C1,且ACA1C1,所以FGEC1,且FGEC1,所以四边形FGEC1为平行四边形,所以C1FEG.又因为EG平面ABE,C1F平面ABE,所以C1F平面ABE.方法二如图2,取AC的中点H,连接C1H,FH.因为H,F分别是AC,BC的中点,所以HFAB,又因为E,H分别是A1C1,AC的中点,所以EC1綊AH,所以四边形EAHC1为平行四边形,所以C1HAE,又C1HHFH,AEABA,所以平面ABE平面C1HF,又C1F平
8、面C1HF,所以C1F平面ABE.(3)解因为AA1AC2,BC1,ABBC,所以AB.所以三棱锥EABC的体积VSABC·AA1×××1×2.思维升华(1)证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题证明C1F平面ABE:()利用判定定理,关键是在平面ABE中找(作)出直线EG,且满足C1FEG.()利用面面平行的性质定理证明线面平行,则先要确定一个平面C1HF满足面面平行,实施线面平行与面面平行的转化(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进
9、行体积的转化如图,在三棱锥SABC中,平面SAB平面SBC,ABBC,ASAB.过A作AFSB,垂足为F,点E,G分别是棱SA,SC的中点求证:(1)平面EFG平面ABC;(2)BCSA.证明(1)由ASAB,AFSB知F为SB中点,则EFAB,FGBC,又EFFGF,ABBCB,因此平面EFG平面ABC.(2)由平面SAB平面SBC,平面SAB平面SBCSB,AF平面SAB,AFSB,所以AF平面SBC,则AFBC.又BCAB,AFABA,则BC平面SAB,又SA平面SAB,因此BCSA.题型三空间角的计算例3如图,在矩形ABCD中,已知AB2,AD4,点E,F分别在AD,BC上,且AE1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)第十二章12.5立体几何问题-教师版
限制150内