考点18 平面向量的概念及其线性运算-备战2020年高考数学(理)考点一遍过_20210103224732.docx
《考点18 平面向量的概念及其线性运算-备战2020年高考数学(理)考点一遍过_20210103224732.docx》由会员分享,可在线阅读,更多相关《考点18 平面向量的概念及其线性运算-备战2020年高考数学(理)考点一遍过_20210103224732.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点18 平面向量的概念及其线性运算1平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.一、平面向量的相关概念名称定义表示方法注意事项向量既有大小又有方向的量叫做向量;向量的大小叫做向量的长度(或模)向量或;模或平面向量是自由向量零向量长度等于0的向量,方向是任意的记作零向量的方向是任意的单位向量长度等于1个单位的向量常用表示非零向量的单位向量是平
2、行向量方向相同或相反的非零向量与共线可记为与任一向量平行或共线共线向量平行向量又叫共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量的相反向量为二、向量的线性运算1向量的加法、减法、数乘运算及其几何意义、运算律2共线向量定理向量a(a0)与b共线,当且仅当有唯一的一个实数,使得.【注】限定a0的目的是保证实数的存在性和唯一性考向一 平面向量的基本概念解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键(2)相等向量具有传递性,非零向量的平行也具有传递性(3)共线向量即平行向量,它们均与起点无关(4)相等向量不
3、仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量(5)向量可以平移,平移后的向量与原向量是相等向量解题时,不要把它与函数图象移动混为一谈(6)非零向量a与的关系:是a方向上的单位向量(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.典例1 下列命题正确的是A单位向量都相等 B模为0的向量与任意向量共线C平行向量不一定是共线向量 D任一向量与它的相反向量不相等【答案】B【解析】对于A,单位向量的模长相等,方向不一定相同,A错误;对于B,模为0的向量为零向量,零向量和任一向量平行,B正确;对于C,共线向量是方向相同或相反的向量,
4、也叫平行向量,C错误;对于D,例如零向量,与它的相反向量相等,D错误.故选B1给出下列四个命题:若,则;若是不共线的四点,则是四边形为平行四边形的充要条件;若,则;的充要条件是且.其中正确命题的序号是A BC D考向二 向量的线性运算平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用(3)用几个基本向量表示某个向量问题的基本技
5、巧:观察各向量的位置;寻找相应的三角形或多边形;运用法则找关系;化简结果.典例2 若、是平面内任意四点,给出下列式子:,其中正确的有A3个 B2个C1个 D0个【答案】B【解析】的等价式是=,左边=+,右边=+,不一定相等;的等价式是=,左边=右边=,故正确;的等价式是=+,左边=右边=,故正确.所以正确的有2个,故选B【名师点睛】熟练掌握向量的线性运算法则是解题的关键2如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则ABCD典例3 如图,在平行四边形中,对角线与交于点,则_.【答案】2【解析】由平行四边形法则,得,故=2.3如图,在中,若,则的值为ABCD考向三 共线向量定理
6、的应用共线向量定理的主要应用:(1)证明向量共线:对于非零向量a,b,若存在实数,使a=b,则a与b共线(2)证明三点共线:若存在实数,使,则A,B,C三点共线【注】证明三点共线时,需说明共线的两向量有公共点.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值典例4 已知两个非零向量a与b不共线.(1)若AB=a+b,BC=2a+8b,CD=3(ab),求证:A,B,D三点共线;(2)试确定实数k,使ka+b和a+kb共线. 【解析】(1)AB=a+b,BC=2a+8b,CD=3(ab),BD=BC+CD=2a+8b+3(ab)=5(a+b)=5AB, AB,BD共线,又
7、它们有公共点B,A,B,D三点共线.(2)ka+b与a+kb共线,存在实数,使得ka+b=(a+kb),(k)a=(k1)b.a,b是两个不共线的非零向量,k=k1=0,k21=0,k=1或1.【名师点睛】利用向量证明三点共线时,一般是把问题转化为证明过同一点的两条有向线段所在的向量共线.对于第(2)问,解决此类问题的关键在于利用向量共线的条件得出ka+b=(a+kb),再利用对应系数相等这一条件,列出方程组,解出参数.4如图,M,N是平行四边形ABCD的边AD,CD的中点,E,F是对角线AC的三等分点,求证:B,E,M三点共线,且B,F,N三点共线.1下列说法正确的是A向量与向量是共线向量,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考点18平面向量的概念及其线性运算-备战2020年高考数学(理)考点一遍过_20210103224732
链接地址:https://www.taowenge.com/p-5102258.html
限制150内