考点07 指数与指数函数-备战2020年高考数学(文)考点一遍过_20210103224739.docx
《考点07 指数与指数函数-备战2020年高考数学(文)考点一遍过_20210103224739.docx》由会员分享,可在线阅读,更多相关《考点07 指数与指数函数-备战2020年高考数学(文)考点一遍过_20210103224739.docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点07 指数与指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.(4)知道指数函数是一类重要的函数模型.一、指数与指数幂的运算1根式(1)次方根的概念与性质次方根概念一般地,如果,那么叫做的次方根,其中,.性质当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.这时,的次方根用符号表示.当是偶数时,正数的次方根有两个,这两个数互为相反数.这时,正数的正的次方根用符号表示,负的次方根用符号表示.正的次方根与负的次方根可以合并写成.负数没有偶次方根.0的任
2、何次方根都为0,记作.(2)根式的概念与性质根式概念式子叫做根式,这里叫做根指数,叫做被开方数.性质.当为奇数时,.当为偶数时,.【注】速记口诀:正数开方要分清,根指奇偶大不同,根指为奇根一个,根指为偶双胞生负数只有奇次根,算术方根零或正,正数若求偶次根,符号相反值相同负数开方要慎重,根指为奇才可行,根指为偶无意义,零取方根仍为零2实数指数幂(1)分数指数幂我们规定正数的正分数指数幂的意义是.于是,在条件下,根式都可以写成分数指数幂的形式.正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定且.0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂规定了分数指数幂的意义之后
3、,指数的概念就从整数指数幂推广到了有理数指数.整数指数幂的运算性质对于有理数指数幂也同样适用,即对于任意有理数,均有下面的运算性质:;.(3)无理数指数幂对于无理数指数幂,我们可以从有理数指数幂来理解,由于无理数是无限不循环小数,因此可以取无理数的不足近似值和过剩近似值来无限逼近它,最后我们也可得出无理数指数幂是一个确定的实数.一般地,无理数指数幂是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.二、指数函数的图象与性质1指数函数的概念一般地,函数叫做指数函数,其中是自变量,函数的定义域是.【注】指数函数的结构特征:(1)底数:大于零且不等于1的常数;(2)指数:仅有自变量x;(
4、3)系数:ax的系数是1.2指数函数的图象与性质图象定义域值域奇偶性非奇非偶函数对称性函数y=ax与y=ax的图象关于y轴对称过定点过定点,即时,单调性在上是减函数在上是增函数函数值的变化情况当时,;当时,当时,;当时,底数对图象的影响指数函数在同一坐标系中的图象的相对位置与底数大小关系如下图所示,其中0<c<d<1<a<b.在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从下到上相应的底数由大变小.即无论在y轴的左侧还是右侧,底数按逆时针方向变大.【注】速记口诀:指数增减要看清,抓住底数不放松;反正底数大于0,不等于1已表明;底数若是大于1,图象从下
5、往上增;底数0到1之间,图象从上往下减;无论函数增和减,图象都过(0,1)点3有关指数型函数的性质(1)求复合函数的定义域与值域形如的函数的定义域就是的定义域求形如的函数的值域,应先求出的值域,再由单调性求出的值域若a的范围不确定,则需对a进行讨论求形如的函数的值域,要先求出的值域,再结合的性质确定出的值域(2)判断复合函数的单调性令u=f(x),xm,n,如果复合的两个函数与的单调性相同,那么复合后的函数在m,n上是增函数;如果两者的单调性相异(即一增一减),那么复合函数在m,n上是减函数(3)研究函数的奇偶性一是定义法,即首先是定义域关于原点对称,然后分析式子与f(x)的关系,最后确定函数
6、的奇偶性二是图象法,作出函数的图象或从已知函数图象观察,若图象关于坐标原点或y轴对称,则函数具有奇偶性考向一 指数与指数幂的运算指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算(2)先乘除后加减,负指数幂化成正指数幂的倒数(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答(5)有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算(6)将根式化为指数运算较为方便,对于计算的结果,不强求统一用什么形式来表示如果有特殊要求,要根据要求写出结果但结果不能同时含
7、有根号和分数指数,也不能既有分母又含有负指数.典例1 化简并求值:(1);(2).【答案】(1);(2).【解析】(1); (2).【名师点睛】把根式化为分数指数幂,再按照幂的运算法则进行运算即可1_考向二 与指数函数有关的图象问题指数函数y=ax(a0,且a1)的图象变换如下:【注】可概括为:函数y=f(x)沿x轴、y轴的变换为“上加下减,左加右减”典例2 函数y=axa(a0,且a1)的图象可能是【答案】C【解析】当x=1时,y=a1a=0,所以y=axa的图象必过定点(1,0),结合选项可知选C.2函数的图像是ABCD考向三 指数函数单调性的应用1比较幂的大小的常用方法:(1)对于底数相
8、同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断;(2)对于底数不同,指数相同的两个幂的大小比较,可以利用指数函数图象的变化规律来判断;(3)对于底数不同,且指数也不同的幂的大小比较,可先化为同底的两个幂,或者通过中间值来比较2解指数方程或不等式简单的指数方程或不等式的求解问题解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论典例3 设,则的大小关系是A B C D【答案】A【解析】对于函数,在其定义域上是减函数,即.在同一平面直角坐标系中画出函数和函数的图象,可知,即.从而.故A正确.【名师点睛】不管是比较指数式的大小还是解含指数式的不等式,
9、若底数含有参数,需注意对参数的值分与两种情况讨论.3设,(其中是自然对数的底数),则ABCD典例4 设函数,若,则实数a的取值范围是A BC D【答案】C【解析】当时,不等式可化为,即,解得;当时,不等式可化为,所以故的取值范围是.故选C【名师点睛】利用指数函数的单调性,分别讨论当及时,的取值范围,最后综合即可得出结果4若,则A B C D考向四 指数型函数的性质及其应用1指数型函数中参数的取值或范围问题应利用指数函数的单调性进行合理转化求解,同时要特别注意底数a的取值范围,并当底数不确定时进行分类讨论2指数函数的综合问题要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时
10、要特别注意底数不确定时,对底数的分类讨论.典例5 已知函数,则fx是A奇函数,且在R上是增函数 B偶函数,且在0,+上是增函数C奇函数,且在R上是减函数 D偶函数,且在0,+上是减函数【答案】C【解析】易知函数的定义域为,关于原点对称,且,则,所以是奇函数,显然函数是减函数.故选C5若函数f(x)=3x3x与g(x)=3x3x的定义域均为R,则Af(x)与g(x)均为偶函数Bf(x)为奇函数,g(x)为偶函数Cf(x)与g(x)均为奇函数Df(x)为偶函数,g(x)为奇函数典例6 若函数的最小值为,则实数的取值范围为ABCD【答案】D【解析】当时,f(x),单调递减,f(x)的最小值为f(2)
11、=1;当x2时,f(x)单调递增,若满足题意,只需恒成立,即恒成立,a0.故选D典例7 函数的值域为_【答案】(0,2【解析】设,又由指数函数为单调递减函数,即可求解由题意,设,又由指数函数为单调递减函数,知当时,即函数的值域为6若关于的不等式的解集包含区间,则的取值范围为A B C D1计算:A3 B2 C D2若函数f(x)=2x,x<1-log2x,x1,则函数f(x)的值域是A(-,2)B0,+)C(-,0)(0,2)D(-,23设,则的大小关系是ABCD4函数f(x)=12x2-2x的单调递减区间为A0,+B1,+C(-,1)D(-,-1)5函数的图象的大致形状是A BC D6
12、已知函数,其值域为,在区间上随机取一个数,则的概率是A B C D7已知实数满足,则下列关系式中恒成立的是A B C D8已知函数在上的值域为,函数在上的值域为.若是的必要不充分条件,则的取值范围是ABCD9已知是定义域为的偶函数,且时,则不等式的解集为A B C D10函数f(x)=log2x+1与g(x)=2-x-1在同一平面直角坐标系下的图象大致是ABCD11设函数与且)在区间上具有不同的单调性,则与的大小关系是A B C D12定义新运算:当mn时,mn=m;当m<n时,mn=n.设函数fx=2x2-1log2x2x,则fx在0,2上的值域为A0,12B0,12C1,12D1,1
13、213设函数,若互不相等的实数满足,则的取值范围是A B C D14已知函数(且)的图象过定点,则点的坐标为_.15已知,则=_.16已知函数的定义域为,则实数的取值范围是_17已知函数,若,则实数的值是_18已知,则_19若不等式-x2+2x+321-3a对任意实数x都成立,则实数a的最大值为_.20已知函数,若,则函数的图象恒过定点_21已知函数的定义域和值域都是,则_22(1);(2).23已知函数.(1)若 ,求方程的根;(2)若对任意,恒成立,求的取值范围.24已知函数(且)是定义在上的奇函数.(1)求的值;(2)求函数的值域;(3)当时,恒成立,求实数的取值范围.1(2019年高考
14、全国卷文数)已知,则ABCD2(2019年高考天津文数)已知,则a,b,c的大小关系为A B CD3(2019年高考浙江)在同一直角坐标系中,函数,(a>0,且a1)的图象可能是4(2019年高考全国卷文数)设是定义域为R的偶函数,且在单调递减,则A(log3)()() B(log3)()()C()()(log3) D()()(log3)5(2018年高考天津卷文科)已知,则的大小关系为A B C D6(2018年高考新课标I卷文科)设函数,则满足的x的取值范围是A B C D7(2017年高考北京卷)已知函数,则A是偶函数,且在R上是增函数B是奇函数,且在R上是增函数C是偶函数,且在R
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考点07指数与指数函数-备战2020年高考数学(文)考点一遍过_20210103224739
链接地址:https://www.taowenge.com/p-5102406.html
限制150内