考点20 平面向量的数量积及向量的应用-备战2020年高考数学(理)考点一遍过.docx
《考点20 平面向量的数量积及向量的应用-备战2020年高考数学(理)考点一遍过.docx》由会员分享,可在线阅读,更多相关《考点20 平面向量的数量积及向量的应用-备战2020年高考数学(理)考点一遍过.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点20 平面向量的数量积及向量的应用1平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.一、平面向量的数量积1平面向量数量积的概念(1)数量积的概念已知两个非零向量,我们把数量叫做向量与的数量积(或内积),记作,即,其中是与的夹角.【注】零向量与任一向量的数量积为0.(2)投影的概念设非零向量与
2、的夹角是,则()叫做向量在方向上(在方向上)的投影.如图(1)(2)(3)所示,分别是非零向量与的夹角为锐角、钝角、直角时向量在方向上的投影的情形,其中,它的意义是,向量在向量方向上的投影长是向量的长度. (3)数量积的几何意义由向量投影的定义,我们可以得到的几何意义:数量积等于的长度与在方向上的投影的乘积.2平面向量数量积的运算律已知向量和实数,则交换律:;数乘结合律:;分配律:.二、平面向量数量积的坐标表示、模、夹角及性质设非零向量,是与的夹角.(1)数量积:.(2)模:.(3)夹角: .(4)垂直与平行:;aba·b=±|a|b|.【注】当与同向时,;当与反向时,.(
3、5)性质:|a·b|a|b|(当且仅当ab时等号成立).三、平面向量的应用1向量在平面几何中常见的应用已知.(1)证明线段平行、点共线问题及相似问题,常用向量共线的条件:(2)证明线段垂直问题,如证明四边形是正方形、矩形,判断两直线(或线段)是否垂直等,常用向量垂直的条件:(其中为非零向量)(3)求夹角问题,若向量与的夹角为,利用夹角公式:(其中为非零向量)(4)求线段的长度或说明线段相等,可以用向量的模:,或(其中两点的坐标分别为)(5)对于有些平面几何问题,如载体是长方形、正方形、直角三角形等,常用向量的坐标法,建立平面直角坐标系,把向量用坐标表示出来,通过代数运算解决综合问题.
4、2向量在物理中常见的应用(1)向量与力、速度、加速度及位移力、速度、加速度与位移的合成与分解,实质上就是向量的加减法运算.(2)向量与功、动量力做的功是力在物体前进方向上的分力与物体位移的乘积,实质是力和位移两个向量的数量积,即为和的夹角).考向一 平面向量数量积的运算平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式;二是坐标公式.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.典例1 若向量m=(2k-1,k)与向量n=(4,1)共线,则mn=A0B4C D【答案】D【解析】因为向量m=(2k-1,k)与向量n=(4,1)
5、共线,所以2k-1=4k,解得k=-12.即m=(-2,-12),n=(4,1),所以mn=.选D典例2 已知向量与的夹角为450,则_【答案】1+2【解析】由向量与的夹角为450,得.1在平行四边形ABCD中,ABCD,则=AB2C3D42已知菱形的边长为2,则A4B6CD考向二 平面向量数量积的应用平面向量数量积主要有两个应用:(1)求夹角的大小:若a,b为非零向量,则由平面向量的数量积公式得(夹角公式),所以平面向量的数量积可以用来解决有关角度的问题(2)确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两
6、向量的夹角为钝角.典例3 在平行四边形中,若则ABCD【答案】C【解析】如图所示,平行四边形中,因为,所以,则,所以.故选C3已知向量,且与的夹角为钝角,则实数的取值范围是 .考向三 平面向量的模及其应用平面向量的模及其应用的类型与解题策略:(1)求向量的模解决此类问题应注意模的计算公式,或坐标公式的应用,另外也可以运用向量数量积的运算公式列方程求解(2)求模的最值或取值范围解决此类问题通常有以下两种方法:几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围(3)由向量的模求夹角对于此
7、类问题的求解,其实质是求向量模方法的逆运用.典例4 已知平面向量的夹角为,且,则ABCD【答案】B【解析】,所以.故选B4已知OA=2,0,OB=0,2,AC=tAB,tR.当OC最小时,t=_.考向四 平面向量的应用1向量与平面几何综合问题的解法与步骤:(1)向量与平面几何综合问题的解法坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解【注】用坐标法解题时,建立适当的坐标系是解题的关键,用基向量解题时要选择适当的基底(2)用向量
8、解决平面几何问题的步骤建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;通过向量运算研究几何元素之间的关系,如距离、夹角等问题;把运算结果“翻译”成几何关系.2利用向量求解三角函数问题的一般思路:(1)求三角函数值,一般利用已知条件将向量关系转化为三角函数关系式利用同角三角函数关系式及三角函数中常用公式求解(2)求角时通常由向量转化为三角函数问题,先求值再求角(3)解决与向量有关的三角函数问题的思想方法是转化与化归的数学思想,即通过向量的相关运算把问题转化为三角函数问题(4)解三角形利用向量的坐标运算,把向量垂直或共线转化为相应的方程,在三角形中利用内角和
9、定理或正、余弦定理解决问题.3用向量法解决物理问题的步骤如下:(1)抽象出物理问题中的向量,转化为数学问题;(2)建立以向量为主体的数学模型;(3)利用向量的线性运算或数量积运算,求解数学模型;(4)用数学模型中的数据解释或分析物理问题. 4常见的向量表示形式:(1)重心若点G是的重心,则或 (其中P为平面内任意一点)反之,若,则点G是的重心(2)垂心若H是的垂心,则.反之,若,则点H是的垂心(3)内心若点I是的内心,则.反之,若,则点I是的内心(4)外心若点O是的外心,则或.反之,若,则点O是的外心.典例5 等腰直角三角形中两直角边上的中线所成的钝角的余弦值为ABCD【答案】A【解析】如图,
10、分别以等腰直角三角形的两直角边所在的直线为x轴、y轴建立平面直角坐标系,设,则,.设向量的夹角为, 则.【思路点拨】根据已知建立平面直角坐标系,将等腰直角三角形的两直角边所在直线作为x轴和y轴,分别设出三角形顶点和两直角边中点的坐标,再代入坐标求解两中线所对应的向量的数量积和模,进而求得夹角的余弦值.5扇形OAB的半径为1,圆心角为90,P是AB上的动点,则OP(OA-OB)的最小值是A0 B-1C-2 D12典例6 已知,函数.()求函数fx的零点;()若锐角的三个内角A、B、C的对边分别是a、b、c,且fA=1,求的取值范围.【解析】()由条件可知:,.故函数fx的零点满足,由,解得, (
11、)由正弦定理得.由()知,而fA=1,得,又,得.,代入化简得: , 又在锐角中,有,又,则有,即:3<b+ca2.【名师点睛】利用向量的共线与垂直和数量积之间的关系建立三角方程或三角函数式,从而解决三角函数中的求值、求角或求最值等问题是高考考查的热点.6在中,内角的对边分别为,且向量,若.(1)求的值;(2)若, 求在方向上的投影.典例7 一质点受到平面上的三个力F1、F2、F3(单位:牛顿)的作用而处于平衡状态已知F1、F2成60°角,且F1、F2的大小分别为2和4,则F3的大小为_【答案】【解析】由题意知F3=(F1F2),|F3|=|F1F2|,|F3|2=|F1|2|
12、F2|22|F1|F2|cos60°=28,|F3|=.7在水流速度为的河流中,有一艘船正沿与水流垂直的方向以的速度航行,则船自身航行的速度大小为_.1已知向量a=(3,0),b=(x,-2),且a(a-2b),则x=A-3 B-32C3 D322已知向量,则A0B1C2或2D3已知共点力F1=(lg 2,lg 2),F2=(lg 5,lg 2)作用在物体M上,产生位移s=(2lg 5,1),则共点力对物体做的功W为Alg 2Blg 5C1D24设向量a,b满足a=2b=2且2a+3b=1,则向量a在向量b方向的投影为A-2 B-1C1 D25已知向量,则下列结论正确的是ABCD6已
13、知向量,若,的夹角为钝角,则的取值范围是ABC且D7在矩形中,,若点,分别是,的中点,则A4B3C2D18在中,设点、满足,若,则AB2CD39中,设,若,则是A直角三角形 B锐角三角形C钝角三角形 D无法确定其形状10已知向量、为单位向量,且在的方向上的投影为,则向量与的夹角为ABCD11已知向量a=(x-1,2),b=(2,1),则“x>0”是“a与b的夹角为锐角”的A充分不必要条件B充要条件C必要不充分条件D既不充分也不必要条件12已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是AB2CD113已知点,若,则的值为ABCD14已知O是内部一点,OA+OB+OC=0,A
14、BAC=2且BAC=60°,则的面积为A33 B3C32 D2315平面直角坐标系xOy中,分别是与x轴、y轴正方向同向的单位向量,向量,则以下说法正确的是A BC D16已知是互相垂直的单位向量,向量,则_17平面向量a与b的夹角为45°,a=(1,-1),|b|=1,则|a+2b|=_18已知,且,共线,则向量在方向上的投影为_19如图,在矩形中,点为的中点,点在边上,且,则的值是 ABCEFD20在平行四边形中,点在边上,则的取值范围是 21设向量,其中,若,则 . 22已知向量AB与AC的夹角为120°,且AB=2,AC=3.若AP=AB+AC,且APBC
15、,则实数的值为_23在平行四边形中,.(1)用表示; (2)若,求的值.24如图,在四边形OBCD中,CD=2BO,OA=2AD,D=90°,且BO=AD=1.(1)用OA,OB表示CB;(2)点P在线段AB上,且AB=3AP,求cosPCB的值.1(2019年高考全国I卷理数)已知非零向量a,b满足,且b,则a与b的夹角为A BC D 2(2019年高考全国II卷理数)已知=(2,3),=(3,t),=1,则=A3B2C2D33(2018新课标全国理科)已知向量,满足,则A4B3C2D04(2019年高考北京卷理数)设点A,B,C不共线,则“与的夹角为锐角”是“”的A充分而不必要条
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考点20平面向量的数量积及向量的应用-备战2020年高考数学(理)考点一遍过
限制150内