2022届高三数学一轮复习(原卷版)第一编 第6讲.doc
《2022届高三数学一轮复习(原卷版)第一编 第6讲.doc》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)第一编 第6讲.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第6讲填空题的解题方法题型特点解读填空题不像解答题能分步得分,因此要保证填写的结果正确,否则前功尽弃解题时,要合理地分析和判断,要求推理、运算的每个步骤都正确无误,还要求将答案表达得准确、完整合情推理、优化思路、少算多思是快速、准确解答填空题的基本要求方法1 巧妙计算法对于计算型的试题,多通过直接计算求解结果,这是解决填空题的基本方法,即直接从题设条件出发,利用有关性质或结论等,通过巧妙的变形,简化计算过程,直接得到结果要善于透过现象抓本质,有意识地采取灵活、简捷的解法例1(1)(2019·高三第三次全国大联考)在ABC中,已知AB3,BC2,若cos(CA),则sinB_.答案解
2、析在线段AB上取点D,使得CDAD,设ADx,则BD3x,因为cos(CA),即cosBCD,所以在BCD中,由余弦定理可得(3x)2x244x·,解得x,在BCD中,由正弦定理可得,因为CD,BD3x,sinBCD,所以sinB.(2)(2019·大连市模拟)已知函数yf(x)是定义域为R的偶函数,且f(x)在0,)上单调递增,则不等式f(2x1)>f(x2)的解集为_答案(,1)(1,)解析函数yf(x)是定义域为R的偶函数,f(2x1)>f(x2)可转化为f(|2x1|)>f(|x2|),又f(x)在0,)上单调递增,f(2x1)>f(x2)|
3、2x1|>|x2|,两边平方解得x(,1)(1,),故f(2x1)>f(x2)的解集为x(,1)(1,)直接法是解决计算型填空题最常用的方法,在计算过程中我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活运用,将计算过程简化从而得到结果,这是快速、准确地解决数学填空题的关键1(2019·长春市高三质量监测)某学校要将4名实习教师分配到3个班级,每个班级至少要分配1名实习教师,则不同的分配方案有_种答案36解析因为某学校要将4名实习教师分配到3个班级,每个班级至少要分配1名实习教师,所以有1个班级一定会安排2名教师,故第一步:先安排2名教师到1个
4、班级实习,有CC6×318种,第二步:将剩下的2名教师安排到相应的2个班级实习,有A2种,根据分步乘法计数原理得这个问题的分配方案共有18×236种2设为锐角,若cos,则sin_.答案解析为锐角,sin .sinsinsincoscossin××.方法2 特殊值代入法当填空题已知条件中含有某些不确定的量,但结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论例2(1)已知函数f(x)的定义域为R,f(1)2,
5、且对任意的xR,f(x)2,则f(x)2x4的解集为_答案(1,)解析解法一:(特殊函数法)令f(x)3x5,则由3x52x4,得x1.解法二:令函数g(x)f(x)2x4,则g(x)f(x)20,因此g(x)在R上为增函数又g(1)f(1)242240,所以原不等式可化为g(x)g(1),由g(x)的单调性可得x1.(2)如图所示,在ABC中,AO是BC边上的中线,K为AO上一点,且2,经过K的直线分别交直线AB,AC于不同的两点M,N.若m,n,则mn_.答案4解析当过点K的直线与BC平行时,MN就是ABC的一条中位线(2,K是AO的中点),这时由于有m,n,因此mn2,故mn4.求值或比
6、较大小关系等问题均可利用取特殊值代入求解,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者多种答案的填空题,不能使用该种方法求解为保证答案的正确性,在利用此方法时,一般应多取几个特例1(2019·温州高三2月高考适应性测试)若x6a0a1(x1)a5(x1)5a6(x1)6,则a0a1a2a3a4a5a6_,a5_.答案06解析令x0,得0a0a1a2a3a4a5a6;又x6(x1)16a0a1(x1)a5(x1)5a6(x1)6,将x1视为一个整体,则a5为二项式展开式中(x1)5的系数,展开式的通项公式为Tr1C(x1)6r(1)r,令r1,则(x1)5的系数
7、的值为C(1)16.2在ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则_.答案解析解法一:(取特殊值)a3,b4,c5,则cosA,cosC0,.解法二:(取特殊角)ABC,cosAcosC,.方法3 推理法对于概念与性质的判断等类型的题目,应按照相关的定义、性质、定理等进行合乎逻辑的推演和判断,有时涉及多选型的问题,尤其是新定义问题,必须进行严密的逻辑推理才能得到正确的结果例3(1)(2019·洛阳市高三第三次统考)甲、乙、丙三位同学,其中一位是班长,一位是团支书,一位是学习委员,已知丙比学习委员的年龄大,甲与团支书的年龄不同,团支书比乙的年龄小,据此推
8、断班长是_答案乙解析根据甲与团支书的年龄不同,团支书比乙年龄小,得到丙是团支书丙比学习委员的年龄大,甲与团支书的年龄不同,团支书比乙年龄小,得到年龄从大到小是乙>丙>学习委员,由此得到乙不是学习委员,故乙是班长(2)(2019·衡水市全国普通高中高三大联考)现有一场专家报告会,张老师带甲、乙、丙、丁四位同学参加,其中有一个特殊位置可与专家近距离交流,张老师看出每个同学都想去坐这个位置,因此给出一个问题,谁能猜对,谁去坐这个位置问题如下:某班10位同学参加一次全年级的高二数学竞赛,最后一道题只有6名同学A,B,C,D,E,F尝试做了,并且这6人中只有1人答对了听完后,四个同
9、学给出猜测如下:甲猜:D或E答对了;乙猜:C不可能答对;丙猜:A,B,F当中必有1人答对了;丁猜:D,E,F都不可能答对,在他们回答完后,张老师说四人中只有1人猜对,则张老师把特殊位置给了_答案丁解析若同学A做对了,则乙、丙、丁猜对了,与题设矛盾,故不符合题意;若同学B做对了,则乙、丙、丁猜对了,与题设矛盾,故不符合题意;若同学C做对了,则丁猜对了,与题设相符,故满足题意;若同学D做对了,则甲、乙猜对了,与题设矛盾,故不符合题意;若同学E做对了,则甲、乙猜对了,与题设矛盾,故不符合题意;若同学F做对了,则乙、丙猜对了,与题设矛盾,故不符合题意综上可知,同学C做对了,丁猜对了故张老师把特殊位置给
10、了丁推理法讲究“推之有理,推之有据”,在推理的过程中要严格按照定义的法则和相关的定理进行,归纳推理和类比推理也要依据自身的推理法则,不能妄加推测1(2019·延安市模拟)甲、乙、丙三位教师分别在延安、咸阳、宝鸡的三所中学里教不同的学科A,B,C,已知:甲不在延安工作,乙不在咸阳工作;在延安工作的教师不教C学科;在咸阳工作的教师教A学科;乙不教B学科可以判断乙工作的地方和教的学科分别是_、_.答案宝鸡C解析由得在咸阳工作的教师教A学科;又由得乙不在咸阳工作,所以乙不教A学科;由得乙不教B学科,结合乙不教A学科,可得乙必教C学科,由得乙不在延安工作,由得乙不在咸阳工作;所以乙在宝鸡工作,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)第一编第6讲
限制150内