2022届高三数学一轮复习(原卷版)考点23 导数的应用(原卷版).docx
《2022届高三数学一轮复习(原卷版)考点23 导数的应用(原卷版).docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)考点23 导数的应用(原卷版).docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点23 导数的应用【命题解读】从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力【基础知识回顾】 1、逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证利用两个经典不等式解决问题,降低了思考问题的难度,优化了推理和运算过程(1
2、)对数形式:x1ln x(x>0),当且仅当x1时,等号成立(2)指数形式:exx1(xR),当且仅当x0时,等号成立进一步可得到一组不等式链:ex>x1>x>1ln x(x>0,且x1)2、一般地,若a>f(x)对xD恒成立,则只需a>f(x)max;若a<f(x)对xD恒成立,则只需a<f(x)min.若存在x0D,使a>f(x0)成立,则只需a>f(x)min;若存在x0D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围分类讨论法:常见有两种情况,一种先利用综合法,结合导函
3、数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数提示:求解参数范围时,一般会涉及分离参数法,理科试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常需要设出导函数的零点,难度较大判断、证明或讨论函数零点个数的方法利用零点存在性定理的条件为函数图象在区间a,b上是连续不断的曲线,且f(a)·f(b)<0.直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;分类讨论法:判断几个
4、零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.3 、数学模型及数学建模数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述数学建模是把实际问题加以抽象概括,建立相应的模型,利用这些模型来研究实际问题的一般数学方法4、 常见的函数模型一次函数;二次函数;指(对)数函数、幂函数三种增长型函数模型的性质函数性质yax(a>1)ylogax(a>1)yxn(n>0)在(0,)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平
5、稳图像的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax 解函数应用题的步骤第一步:阅读理解题意读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题第二步:引用数学符号,建立数学模型一般地,设自变量为x,函数为y,必要时引入其他相关辅助变量,并用x、y和辅助变量表示各相关量,然后根据已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个函数问题,实现问题数学化,即所谓
6、建立数学模型第三步:利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果第四步:将所得结果再转译成具体问题的解答1、有一批材料可以建成200 m的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),若围墙厚度不计,则围成的矩形最大面积为( )第2题图A. 2 500 m2 B. 2 750 m2C. 3 000 m2 D. 3 500 m22、已知不等式exx1对xR恒成立以下命题中真命题是()A对xR,不等式ex>1x恒成立B对x(0,),不等式ln(x1)<x恒成立C对x(0,),且x1,不等式ln x<x
7、1恒成立D对x(0,),且x1,不等式>恒成立3、已知,若函数恰有4个不同的零点,则实数的取值范围为 3、 将边长为1m的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记S,则S的最小值是_4、(2018苏州期末)已知直线ya分别与直线y2x2和曲线y2exx相交于点A,B,则线段AB长度的最小值为_考向一利用都是证明不等式例1、已知函数.(1)求函数的单调递增区间;(2)证明:当时,.变式1、已知函数,(1)当时,证明:;(2)已知,证明: 变式2、(2019苏州暑假测试)已知函数f(x)x1alnx(其中a为参数)(1) 求函数f(x)的单调区间;(2) 若对任意x(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)考点23导数的应用(原卷版)
限制150内