2022届高三数学一轮复习(原卷版)第9节 函数与方程 教案.doc
《2022届高三数学一轮复习(原卷版)第9节 函数与方程 教案.doc》由会员分享,可在线阅读,更多相关《2022届高三数学一轮复习(原卷版)第9节 函数与方程 教案.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九节函数与方程最新考纲结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数1函数的零点(1)函数零点的定义对于函数yf(x)(xD),把使f(x)0的实数x叫做函数yf(x)(xD)的零点(2)三个等价关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点(3)函数零点的判定(零点存在性定理)如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)·f(b)0,那么,函数yf(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)0,这个c也就是方程f(x)0的根2二次函数yax2bxc(a0)的图
2、象与零点的关系000二次函数yax2bxc(a0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210有关函数零点的3个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号一、思考辨析(正确的打“”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点()(2)函数yf(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)0.()(3)若函数f(x)在(a,b)上单调且f(a)
3、·f(b)0,则函数f(x)在a,b上有且只有一个零点()(4)二次函数yax2bxc在b24ac0时没有零点()答案(1)×(2)×(3)×(4)二、教材改编1已知函数yf(x)的图象是连续不断的曲线,且有如下的对应值表:x123456y124.4337424.536.7123.6则函数yf(x)在区间1,6上的零点至少有()A2个B3个C4个 D5个Bf(2)·f(3)0,f(3)·f(4)0,f(4)·f(5)0,故函数f(x)在区间1,6内至少有3个零点2函数f(x)ln x2x6的零点所在的区间是()A(0,1)
4、B(1,2)C(2,3) D(3,4)C由题意得f(1)ln 12640,f(2)ln 246ln 220,f(3)ln 366ln 30,f(4)ln 486ln 420,f(x)的零点所在的区间为(2,3)3函数f(x)ex3x的零点个数是_1由已知得f(x)ex30,所以f(x)在R上单调递增,又f(1)30,f(0)10,因此函数f(x)有且只有一个零点4函数f(x)xx的零点个数为_1作函数y1x和y2x的图象如图所示由图象知函数f(x)有1个零点考点1函数零点所在区间的判定判断函数零点所在区间的方法(1)解方程法,当对应方程易解时,可直接解方程(2)零点存在性定理(3)数形结合法,
5、画出相应函数图象,观察与x轴交点来判断,或转化为两个函数的图象在所给区间上是否有交点来判断1.函数f(x)ln x的零点所在的区间为()A(0,1)B(1,2)C(2,3) D(3,4)B由题意知函数f(x)是增函数,因为f(1)0,f(2)ln 2ln 2ln 0,所以函数f(x)的零点所在的区间是(1,2)故选B.2若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间()A(a,b)和(b,c)内B(,a)和(a,b)内C(b,c)和(c,)内D(,a)和(c,)内Aabc,f(a)(ab)(ac)0,f(b)(bc)(ba)0,f(c)(ca)(
6、cb)0,由函数零点存在性判定定理可知:在区间(a,b)(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.3已知函数f(x)ln x2x6的零点在(kZ)内,那么k_.5f(x)20,x(0,),f(x)在x(0,)上单调递增,且fln 10,f(3)ln 30,f(x)的零点在内,则整数k5.(1)f(a)·f(b)0是连续函数yf(x)在闭区间a,b上有零点的充分不必要条件(2)若函数f(x)在a,b上是单调函数,且f(x)的图象连续不断,则f(a)·f(b)0函数f(x)在区
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高三数学一轮复习(原卷版)第9节函数与方程教案
限制150内