函数的性质与应用问题-2022年中考数学大题狂练之压轴大题突破培优练(原卷版)【江苏专用】.docx
《函数的性质与应用问题-2022年中考数学大题狂练之压轴大题突破培优练(原卷版)【江苏专用】.docx》由会员分享,可在线阅读,更多相关《函数的性质与应用问题-2022年中考数学大题狂练之压轴大题突破培优练(原卷版)【江苏专用】.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年中考数学大题狂练之压轴大题突破培优练(江苏专用) 专题9函数的性质与应用问题【真题再现】1(2021江苏淮安中考真题)某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?2(2021江苏南通中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”例如,点是函数的图象的“等值点”(1)分别判断函数的图
2、象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C当的面积为3时,求b的值;(3)若函数的图象记为,将其沿直线翻折后的图象记为当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围3(2021江苏泰州中考真题)二次函数yx2+(a1)x+a(a为常数)图象的顶点在y轴右侧(1)写出该二次函数图象的顶点横坐标(用含a的代数式表示);(2)该二次函数表达式可变形为y(xp)(xa)的形式,求p的值;(3)若点A(m,n)在该二次函数图象上,且n0,过点(m+3,0)作y轴的平行线,与二次函数图象的
3、交点在x轴下方,求a的范围4(2021江苏南京中考真题)已知二次函数的图像经过两点(1)求b的值(2)当时,该函数的图像的顶点的纵坐标的最小值是_(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围5(2021江苏扬州中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车另外,公司为每辆租出的汽车支付月维护费200元乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1
4、850元说明:汽车数量为整数;月利润=月租车费-月维护费;两公司月利润差=月利润较高公司的利润-月利润较低公司的利润在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_元;当每个公司租出的汽车为_辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围6(2021江苏南通中考真题)A,B两家超市平时以同样的价格出售相同的商品暑假期
5、间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折例如,一次购物的商品原价为500元,去A超市的购物金额为:(元);去B超市的购物金额为:(元)(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由7(2021江苏泰州中考真题)农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同以每棵树上桃子的数量x(个)为横坐标
6、、桃子的平均质量y(克/个)为纵坐标,在平面直角坐标系中描出对应的点,发现这些点大致分布在直线AB附近(如图所示)(1)求直线AB的函数关系式;(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式wy+2在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?8(2021江苏南京中考真题)甲、乙两人沿同一直道从A地去B地,甲比乙早出发,乙的速度是甲的2倍在整个行程中,甲离A地的距离(单位:m)与时间x(单位:)之间的函数关系如图所示(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图;(2)若甲比乙晚到达B地,求甲整个行程所用的时间
7、9(2021江苏连云港中考真题)为了做好防疫工作,学校准备购进一批消毒液已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用10(2020年南通第25题)已知抛物线yax2+bx+c经过A(2,0),B(3n4,y1),C(5n+6,y2)三点,对称轴是直线x1关于x的方程ax2+bx+cx有两个相等的实数根(1)求抛物线的解析式;(2)若n5,试比较y1与y2的大小;(3)若B,C两点在直线x1的两侧,
8、且y1y2,求n的取值范围11(2020年苏州第27题)某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变)6月9日从6月1日至今,一共售出200kg6月10、11日这两天以成本价促销,之后售价恢复到10元/kg6月12日补充进货200kg,成本价8.5元/kg6月30日800kg
9、水果全部售完,一共获利1200元12(2020年扬州第28题)如图,已知点A(1,2)、B(5,n)(n0),点P为线段AB上的一个动点,反比例函数y=kx(x0)的图象经过点P小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大”(1)当n1时求线段AB所在直线的函数表达式你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值(2)若小明的说法完全正确,求n的取值范围【专项突破】1(2021江苏苏州一模)已知抛物线W:的图象与x轴交于A、B两点,与y轴交于点C,且关于直线对称,点A的坐标为(
10、1)求抛物线W的解析式和顶点坐标;(2)当时,二次函数的最小值为,求a的值2(2021江苏盐城一模)为积极响应国家“旧房改造”工程,该市推出加快推进旧房改造工作的实施方案推进新型城镇化建设,改善民生,优化城市建设(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?3(2021江苏苏州一模)疫情期间,按照防疫要求,学生在进校时必须排
11、队接受体温检测某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0x30校门口有一个体温检测棚,每分钟可检测40人(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果)4(2021江苏南京二模)某公司生产甲、乙两种产品已知生产甲种产品每千克的成本费是30元,生产乙
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏专用 函数 性质 应用 问题 2022 年中 数学 大题狂练 压轴 突破 培优练 原卷版 江苏 专用
链接地址:https://www.taowenge.com/p-51083876.html
限制150内