聚氨基甲酸酯(PU)公司统计过程质量控制分析.docx
《聚氨基甲酸酯(PU)公司统计过程质量控制分析.docx》由会员分享,可在线阅读,更多相关《聚氨基甲酸酯(PU)公司统计过程质量控制分析.docx(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、聚氨基甲酸酯(PU)公司统计过程质量控制分析目录一、 产业环境分析2二、 保障措施3三、 必要性分析4四、 过程质量控制的特点5五、 质量数据与分布规律10六、 控制图的观察与分析13七、 控制图应用的程序15八、 公司基本情况18九、 人力资源配置20劳动定员一览表20十、 发展规划分析22十一、 项目风险分析29十二、 项目风险对策31十三、 法人治理结构33一、 产业环境分析“十三五”时期,国家实施“一带-路”、长江经济带等战略和省实施的高铁经济带、黔中经济区等战略,为我市扩大开放合作提供了良好契机;随着创新驱动时代加速到来,贵阳在大数据发展方面已经呈现先行态势,可以顺势而为抢占发展制高
2、点;国家采取一系列稳增长措施,贵阳迎来承接产业转移、实现资源优化组合的历史机遇;国家实施新一轮西部大开发战略,为我市完善基础设施、构建现代产业体系、提升公共服务能力等提供了良好条件;贵阳建设全国生态文明示范城市效果明显,“爽爽的贵阳”成为响亮品牌,清爽的空气和凉爽的天气成为强大竞争力;特别是省委、省政府把贵阳放在更加突出的位置,提出要进一步增强贵阳城市功能,提高省会城市首位度,为贵阳发展注入了新的强大动力。同时,对全省的贡献率不高、集聚效应和辐射带动作用不强,与省会城市的地位还不相适应等问题也不同程度存在。主要有:产业发展“青黄不接”,标志性的大产业、大企业、大项目缺乏,大数据先发优势和发展基
3、础还不牢固;城乡区域发展不协调,农村路水电房气讯等基础设施薄弱;城市承载能力不足,城市配套、运行和管理体系不够完善,资源环境约束趋紧;民生保障能力有待提高,优质教育和医疗资源不足,交通拥堵、农副产品价格偏高等问题仍未有效缓解。总之,欠发达欠开发的基本市情没有变,既要“赶”又要“转”的双重任务没有变,处于西部省会城市第三梯队的状况没有变,我们必须科学判断和准确把握发展趋势,进一步强化责任意识、进取意识、创新意识,充分利用各种有利条件,加快解决突出矛盾和问题,凝心聚力肩负起守底线、走新路、打造升级版的历史使命。二、 保障措施(一)加强统筹协调在数字我省建设领导小组领导下,各成员单位按照职责分工,采
4、取有效措施抓好工业互联网重点任务落实。各市州和重点园区结合本地实际,制定本区域发展规划,完善政策体系,落实相关配套政策。充分发挥高校、科研机构、专业智库支撑作用,深入开展工业互联网发展的前瞻性、战略性问题研究。(二)加大政策支持持续开展省级工业互联网平台体系建设,加大“5G+工业互联网”示范工厂、“上云上平台”标杆企业培育。支持有条件的地方申报国家工业互联网领域新型工业化产业示范基地,支持符合条件的企业积极申报国家工业互联网创新发展工程和工业互联网试点示范项目。统筹利用好财政专项资金、产业投资基金,加大对工业互联网发展的政策支持力度。(三)加快人才培养支持各地开辟工业互联网产业人才引进绿色通道
5、,研究制定差异化的人才认证、联合培养等政策。充分发挥高校和职教优势,联合工业互联网平台企业、工业企业共同建设一批工业互联网产业学院、特色化示范性软件学院及产业实训基地。建立工业互联网智库,形成具有政策研究能力和应用咨询能力的本地高端咨询人才队伍。(四)推进开放合作引导省内制造企业、平台企业、协会联盟等与国内外企业、机构在技术标准、资源分配、业务发展等领域开展务实合作。支持双跨平台、跨国公司、科研机构等在我省建设工业互联网研发中心、示范工厂、培训中心等。加强知识产权保护,推动建立数据资源产权、交易流通、跨境传输和安全保护等基础制度和标准规范。鼓励有能力的企业设立海外分支机构,为省内工业互联网企业
6、拓展国际市场提供高效专业服务。,三、 必要性分析1、提升公司核心竞争力项目的投资,引入资金的到位将改善公司的资产负债结构,补充流动资金将提高公司应对短期流动性压力的能力,降低公司财务费用水平,提升公司盈利能力,促进公司的进一步发展。同时资金补充流动资金将为公司未来成为国际领先的产业服务商发展战略提供坚实支持,提高公司核心竞争力。四、 过程质量控制的特点1、统计过程质量控制的基本概念所谓控制是要以某个标准为基准,一旦偏离了这个基准,就要尽快加以纠正,使之保持这个基准。SPC(统计过程控制)就是以统计控制状态(稳态)作为基准的,这是一个非常重要的基本概念。统计控制状态也称稳态,即过程中只有正常因素
7、(随机因素)而无异常因素(系统因素)产生的变异的状态。影响质量变异的原因包含正常因素(随机因素)和异常因素(系统因素)两大类。正常因素的特点表现为:对质量变异的影响是微小的;在过程中是始终存在的;对质量变异的影响方向是不确定的。由正常因素所造成的质量变异称为正常质量波动,鉴于正常质量波动的原因难以查明、难以消除,所以常采取持续改进的方法。异常因素的特点表现为:对质量变异的影响很大;在过程中时有时无;对质量变异的影响方向是确定的;异常因素是可以控制的(可以查明、可以消除)。由于异常因素所造成的质量变异、质量波动,其原因可以查明、可以消除,所以采取的态度应该是“严加控制”。正常质量波动表现出质量数
8、据形成典型分布(在确定的生产条件下,质量数据的分布中心和标准偏差表现为确定的值)。异常质量波动表现出质量数据的典型分布遭到破坏,即质量数据的分布中心和标准偏差发生显著的变化。统计过程控制就是要保持过程中只有正常因素起作用,控制异常因素的作用,使过程处于稳定受控状态。为了实现过程控制,必须采用科学的质量控制方法,如统计技术中分布状态、控制图,来捕捉过程中的异常先兆,并结合专业技术消除异常的质量波动。也就是说,统计过程控制是通过应用统计技术识别异常、消除异常,把不合格原因消灭于过程之中,达到预防不合格品产生的目的。2、统计过程质量控制的步骤质量控制大致可以分为7个步骤。(1)选择控制对象。(2)选
9、择需要监测的质量特性值。(3)确定规格标准,详细说明质量特性。(4)选定能准确测量该特性值的监测仪表,或自制测试手段。(5)进行实际测试并做好数据记录。(6)分析实际与规格之间存在差异的原因。(7)采取相应的纠正措施。当采取相应的纠正措施后,仍然要对过程进行监测,将过程保持在新的控制水准上。一旦出现新的影响因子,还需要测量数据,分析原因,进行纠正,因此这7个步骤形成了一个封闭式流程,称为“反馈环”。这点和六西格玛质量突破模式的DMAIC有共通之处。质量控制技术包括两大类:抽样检验和过程质量控制。抽样检验通常是指生产前对原材料的检验或生产后对成品的检验,根据随机样本的质量检验结果决定是否接受该批
10、原材料或产品,过程质量控制是指对生产过程中的产品随机样本进行检验,以判断该过程是否在预定标准内生产。抽样检验用于检验与评价,而过程质量控制应用于各种形式的生产过程。因此,所谓统计过程质量控制,是利用数理统计的方法,对生产过程的各个阶段进行控制。从而达到改进与保证产品质量的目的。SPC强调全过程预防为主的思想。SPC不仅可用于制造过程,而且还可以用于服务过程,以改进和保证服务质量。SPC强调全员参加,人人有责,强调采用科学的方法来达到目的。3、SPC的特点许多质量管理技术是对已生产出来的产品进行分析、检验或评估,以找出提高产品质量的途径和方法,这是事后补救的方法。而统计过程控制与其他方法不同,它
11、是在生产过程的各个阶段对产品质量进行适时的监控与评估,因而是一种预防性的方法,强调全员参与和整个过程的控制。因而其特点可总结为以下几点。(1)产品质量的统计观点。应用数理统计方法分析和总结产品质量规律的观点是现代质量管理的基本观点之一。产品质量的统计观点包括以下两方面内容。产品质量或过程质量特性值是波动的。在生产过程中,产品的质量特征值的波动是不可避免的,它是由设备(Machine)、材料(Material)、操作人(Man)、工艺(Method)、环境(Environment),即4MIE五个方面等基本因素的波动综合影响所致。由于产品在生产中不断受4MIE等质量因素的影响,而这些质量因素是在
12、不断变化的,即使同一个工人,用同一批原材料在同一台机器设备上所生产出来的同一种零件,其质量特性值也不会完全一样。它们或多或少存在差异。这是质量变异的固有本性波动性。产品公差制度的建立已表明产品质量是波动的。产品质量的变异具有统计规律。即产品质量特性值的波动具有统计规律性。产品质量特性值的波动幅值及出现不同波动幅值的可能性大小,服从统计学的某些分布规律。在质量管理中,常用的分布主要有正态分布、二项分布、泊松分布等,而寿命特性值很多服从指数分布。知道了质量特性值服从什么分布,就可以利用这一点来保证与提高产品的质量。因此,可以用统计理论来保证与改进产品质量。统计过程质量控制就是在这种思想指导下产生的
13、。(2)发现及纠正异常因素。从对质量的影响大小来看,质量因素的波动分为两种:正常波动和异常波动,或称为偶然误差(偶然因素)和系统误差(异常因素)。产生质量波动的因素分为随机因素和异常因素两大类。随机因素对产品质量和过程的影响可用质量改进的技术与方法进行识别、减小和降低;异常因素对产品质量的影响很大,在生产过程中应利用SPC控制技术及时分析,并纠正和消除。因此,在正常生产过程中一旦发现异常因素,则应尽快地把它找出来,并采取措施将其消除。这就是抓主要矛盾。SPC控制技术是发现及纠正异常因素的科学工具。(3)稳定状态是过程质量控制追求的目标。在生产过程中,只有随机因素而没有异常因素的状态称为稳定状态
14、,也叫统计控制状态。在统计控制状态下,对产品质量的控制不仅可靠而且经济,所产生的不合格品最少。因此,稳态生产是过程控制所追求的目标。(4)预防为主是统计过程控制的重要原则。质量是制造出来的,不是检验出来的。统计过程控制的目的是在生产过程中实施一种避免浪费,不生产废品的预防策略,发挥质量管理人员、技术人员、现场操作工人的共同作用,从上、下工序过程的相互联系中进行分析,实现“预防为主”的原则,在生产过程中保证产品质量。现代质量管理强调以预防为主,要求在质量形成的整个生产过程中,尽量少出或不出不合格品,这就需要研究两个问题:一是如何使生产过程具有保证不出不合格品的能力;二是如何把这种保证不出不合格品
15、的能力保持下去,一旦这种保证质量的能力不能维持下去,应能尽早发现,及时得到情报,查明原因,采取措施,使这种保证质量的能力继续稳定下来,保持下去,真正做到防患于未然。前一个问题一般称为生产过程的工序能力分析,后一个问题一般称为生产过程的控制。五、 质量数据与分布规律1、质量数据的基本概念定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此,在质量管理中要特别重视对数据的搜集、整理和分析工作。质量数据是指某质量指标的质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质
16、量指标在企业中就多种多样,质量数据在企业中几乎无处不在。在质量数据统计分析中,从样本到总体的问题,即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和计数值数据。(1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续
17、性数据,如长度、重量、强度、时间、标高、位移等。(2)计数值数据。计数值数据是指不能连续取值的,只能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数等。计数值是指具有离散分布性的数据。2、质量数据的统计特征值应用统计过程质量控制,其基本的做法就是用有限的样本去分析推断总体的特征。过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个
18、中心值周围,越靠近中心值,数据越多;越偏离中心值,数据越少。这意味着数据的分散是有规律的,表现为数据的集中性。数据的分散性和集中性统称为数据的“统计规律性”。质量数据的集中趋势和离散程度反映了总体质量变化的内在规律性。(1)质量数据的位置特征值。在分析质量数据的分布状态时,描述数据分布集中趋势主要有算术平均值、中位数等。(2)数据的离散特征数。数据的分散程度在质量管理中就是质量特性值的波动性,反映过程能力。在分析数据的分布状态时,常被用于表示数据分布的离散程度的特征数,主要有极差、标准偏差等。3、质量数据的分布规律质量数据具有个体数值的波动性和总体分布的规律性。在统计过程质量控制中,各种统计技
19、术的应用都是以质量数据的分布规律为依据进行的,其中最常用的有正态分布、二项式分布和泊松分布。(1)正态分布。正态分布是一种最常见的连续性随机变量的概率分布。其特征是“钟”形曲线。实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。轴与正态曲线之间的面积恒等于1。(2)二项分布。二项分布是一种典型的离散性分布。(3)泊松分布。泊松分布P(A)中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如,某电话交换台收到的呼叫来到某公共汽车站的乘客、某放射性物质发
20、射出的粒子、显微镜下某区域中的白细胞等,以固定的平均瞬时速率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。六、 控制图的观察与分析在生产过程中,通过分析控制图来判定生产过程是否处于稳定状态。1、控制图的判断稳态准则在生产过程中只存在偶然因素而不存在异常因素对过程的影响状态,这种状态称为统计控制过程状态或稳定状态,简称稳态。稳态是生产过程追求的目标。在统计量为正态分布的情况下,只要有一个点子在界限外就可以判断有异常。但由于两类错误的存在,只根据一个点子在界限内外远不能判断生产过程处于稳态。如果连续在控制界内的点子更多,即使有个别点子
21、出界,过程仍看作是稳态的,这就是判稳准则。在做控制图判别时,首先应该判断过程是否稳定。生产过程或工序是否处于受控状态,其基本判断条件有以下两条。(1)在控制界限内的点子排列无缺陷,为随机排列。点子排列无缺陷意味着应满足以下三个条件:样本点分布均匀,位于中心线两侧的样本点各占50%;靠近中心线的样本点约占2/3;靠近控制界限的样本点极少。(2)所有点子基本上都落在控制界限内。由概率论理论可知,小概率事件可以认为不会发生。如果在控制图中点子未出界限,同时界线内点子的排列也是随机的,则认为生产过程处于稳定状态或控制状态。如果控制图点子出界或界限内点排列非随机,则认为生产过程不稳定或失控。对于生产过程
22、或工序而言,控制图的判断稳态准则起着告警铃的作用,控制图点,子出界就好比告警铃响,告诉现在是应该进行查找原因、采取措施、防止再犯的时刻了。2、控制图的判异规则控制图上的点子依样本时间序列而出现在控制图上,通常是很随机地散布在管制界内。有时点子虽未超出管制界限,但一连串好几点都在管制图的中心线以上或点子呈现周期性变化时,也可判为异常。判异准则有两类:点出界就判异,这一点是针对界外点的;界内点排列不随机判异,这一点则是针对界内点的。常规控制图的判异准则参照ISO8258和GB/T40912001有8种准则。将控制图等分为6个区。七、 控制图应用的程序应用控制图的主要目的是发现过程或工序异常点,追查
23、原因并加以消除,使过程或工序保持受控状态;对过程或工序的质量特性数据进行时间序列分析,以掌握过程或工序状态。因此,在进入控制图应用程序之前,根据统计过程质量控制的目的确定控制图的类型,然后,进入控制图应用的一般程序。1、控制图应用的一般程序(1)选取控制的质量特性与预备数据。控制的质量特性就是选出符合统计过程质量控制,运用目的、可控、易于评价的质量特性或项目,如对产品的使用效果有重大影响的质量特性,对下道工序的加工质量关系重大的质量特性,生产过程中波动大的质量特性,等等。随机收集能反映出质量特性的一组数据,即预备数据。预备数据是用来绘制控制图的数据。(2)计算统计量。不同种类的控制图所需要的统
24、计量各不相同,应根据所选取的控制图种类的统计变量的规定对预备数据进行统计计算。(3)计算控制界限。不同图种的控制图,其控制界限的计算公式各不相同。但都需要计算CL,UCL,LCL,计算公式根据统计量的分布特征值及相互关系推导而得。(4)绘制分析用控制图。根据计算的控制界限数值,在控制图纵坐标轴上刻度,并画出CL,UCL、LCL.三条界限。控制图横坐标轴的刻度为样本号。按数据表中各组数据的统计量值在控制图中打点并用直线线段连接为折线,即为分析用控制图。分析用控制图是在对过程的稳定性或受控状态没有明确结论时绘制的控制图,主要目的是判断过程是否处于稳定状态或受控状态。(5)过程稳定与否和异常与否的判
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 氨基甲酸酯 PU 公司 统计 过程 质量 控制 分析
限制150内