电动力学习题解答2(11页).doc
《电动力学习题解答2(11页).doc》由会员分享,可在线阅读,更多相关《电动力学习题解答2(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-电动力学习题解答2-第 11 页第二章 静电场1. 一个半径为R的电介质球,极化强度为,电容率为。(1)计算束缚电荷的体密度和面密度:(2)计算自由电荷体密度;(3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。解:(1)(2)(3)(4)2. 在均匀外电场中置入半径为的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差;(2)导体球上带总电荷解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。当时,电势满足拉普拉斯方程,通解为因为无穷远处 ,所以 ,当 时,所以 即: 所以 (2)设球
2、体待定电势为,同理可得当 时,由题意,金属球带电量所以 3. 均匀介质球的中心置一点电荷,球的电容率为,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。提示:空间各点的电势是点电荷的电势与球面上的极化电荷所产生的电势的迭加,后者满足拉普拉斯方程。解:(一)分离变量法空间各点的电势是点电荷的电势与球面上的极化电荷所产生的电势的迭加。设极化电荷产生的电势为,它满足拉普拉斯方程。在球坐标系中解的形式为:当时,。当时,为有限,。所以 , 由于球对称性,电势只与R有关,所以所以空间各点电势可写成当时,由 得: 由 得:,则 所以 (二)应用高斯定理在球外,RR0 ,由高斯定理得:
3、,(整个导体球的束缚电荷),所以 ,积分后得: 在球内,R)置一点电荷,试用分离变量法求空间各点电势,证明所得结果与电象法结果相同。解:以球心为原点,以球心到点电荷的连线为极轴建立球坐标系。将空间各点电势看作由两部分迭加而成。一是介质中点电荷产生的电势二是球面上的感应电荷及极化面电荷产生的。后者在球内和球外分别满足拉普拉斯方程。考虑到对称性,与无关。由于时,为有限值,所以球内的解的形式可以写成 (1)由于时,应趋于零,所以球外的解的形式可以写成 (2)由于 (3)当时, (4)当时, (5)因为导体球接地,所以 (6) (7)将(6)代入(4)得: (8)将(7)代入(5)并利用(8)式得:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电动力学 习题 解答 11
限制150内